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Lecture 31 – Eulerian and Hamiltonian Graphs

Hello  friends!  Welcome to my lecture  on Eulerian  and Hamiltonian  Graphs.  Let  us  first

define an Eulerian  graph. A graph G is  called an Eulerian  graph if  there exists  a closed

traversable trail, called an Eulerian trail. Now let us recall the definition of an Eulerian, let us

recall  the definition of a traversable graph. A multigraph is called traversable if it  can be

drawn without any breaks in the curve and without repeating any edge. That is, if there is a

path which includes all vertices and uses each edge exactly once. 
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Say for example, we can consider this multigraph. Let us consider this multigraph. We are

going to show that it is a traversable graph. So we must show that there is a path which

includes all vertices of this graph and uses each edge exactly once. The vertices are, five

vertices are there: A, B, C, D, E. So let us show that it is a traversable graph. So we will show

that there is a path which includes all vertices and uses each path exactly once.

So let us follow this path—AD, then DE, then we follow EA, and then we go from A to B,

and then we go BE, then EC, then CD and then DC and then CB. So a path we can take as,

we can similarly start with the point B instead of the point A and end at A. So a path that

includes all vertices and uses each edge exactly once is: A, D, E, then EA, then AB, then BE,

then EC, then CD, then DC and then CB.



So A to D, then D to E, then E to A, then A to B, then B to E, then E to C, then C to D, and

then D to C and then C to B. So this is one path. And you can see there is a path which

includes all the vertices, five vertices; A, B, C, D, E and also uses each edge exactly once.

The other path could be, the other path can be taken as: We can move along BC, BC, then

CE, then EB, then BA, then AE, then ED, then DC, then CD, and then DA. So this another

path which begins at B and ends at A.

And you can see both A and B are odd vertices, vertices of order three each. So any finite

connected graph with two odd vertices is traversable. A traversable trail may begin at either

odd vertex and ends at the other odd vertex. So here we started at the odd vertex A and ended

at the other odd vertex B. Here we can start at the odd vertex B and end at the odd vertex, can

end at the other odd vertex A.

So the path here is: B, C, E, then B, CE, EB, BA, then AE, then ED, then DC, then CD and

then DA. So since we are able to find a path which includes odd vertices and uses each

exactly once, so this graph is a traversable graph.

Now there is a theorem by Euler—A finite connected graph is Eulerian if and only if each

vertex has even degree. So there is necessary and sufficient condition for an Eulerian graph

which is given by Euler, it says that a finite connected graph is Eulerian if and only if each

vertex has even degree. So we can see whether a given graph is Eulerian or not by using this

condition.
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Now let us see, we can see whether each of the following graphs is traversable or not. So let

us see, let us note the degrees of each of these graphs. So this is let us say part a, this is b, this

is c. So in part a, degree of A, degree(A) = 5, degree(B) =2, degree (C) =2. And 

degree (D)=3. So there are two vertices with odd degree. Vertices A and D are of odd degree.
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Now let  us see, a finite  connected graph is  Eulerian if  and only if  each vertex has even

degree.  So each vertex  must  be of  even degree.  A finite  connected  graph with  two odd

vertices is traversable.
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So here we have two odd vertices and therefore this is a traversable graph. The graph in part a

is  a  traversable graph.  Now in the case of part  b,  the degree(A) =3. Degree(B) =3 And

degree(C) =3, degree(D)=1. So all vertices are of odd degree. Now there are more than two

vertices. So this graph has more than 2 odd vertices, therefore it is not a traversable graph.

So since vertices of odd degree exceed 2, vertices of odd degree are 4. Vertices of odd degree

are 4 which is greater than 2, the graph is not traversable. Because if there are more than two

vertices  which  are  of  odd degree,  the  graph cannot  be traversable.   So the  graph is  not

traversable.  Now  let  us  see  the  part  3.  In  part  3,  the  degree  (A)=4.  So  degree(A)  =4,

degree (C) = 1.

degree(B)=3 and degree(D) = 2. So there are two vertices B and C which are of odd degree.

So there are two vertices which are of odd degree. This graph is traversable. So the graphs in

part a and c are traversable while the graph in part b is not traversable.
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Now let us determine which of the following graphs G are traversable. So V(G) are A, B, C,

D. E(G) is set of edges of the graph G are AB, BC, CD, DA. So AB, BC, CD and then DA.

So now the degree of the vertex (A) = 2, degree(B) = 2, degree(C)=2, degree(D) =2. Since

degrees of A, B, C, and D are even, are 2 the graph is traversable.

The graph is traversable because we have said that, okay, we can also say a finite connected

graph with two odd vertices is, either with zero vertices it is traversable or with two odd

vertices it is traversable. So here it is a graph which is of zero odd vertices. So since the



degree of A, B, C, D are all even, the graph is traversable. Now let us see the part (b). In part

(b) we have AB, AC, BC, BD, CD, DA. You see, AB, then AC, then BC, this is BC, then we

have BD, then we have CD, we have CD here and then DA.

So now let  us  see  what  are  the  degrees  of  the  vertices  here.  degree(A)=3.  degree(B)=3.

degree (D)=3. And degree(C)=3. So all the vertices are of odd degree, that is 3 and therefore

it is not traversable. Okay, now let us see the part (c). We have AB, CD, BA; so AB, BA.

Okay, CC, so we have a loop here, CC. At C there is a loop and then we have CD, then D.

Now you can see each vertex here, A is of degree 2, B is of degree of 2, C is of degree 2, D is

of degree 2.

Now degree(A) =degree(B)= degree(D)= 2. While degree(C)=4 because 2 for loop and 2 for

CD and DC. So degree(C) = 4. Now degrees of all the four vertices are even but the graph is

not  traversable  because  it  is  not  connected.  It  is  not  connected  graph,  so  it  cannot  be

traversable.
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Now let us discuss Hamiltonian Graphs. A Hamiltonian circuit in a graph G, named after the

nineteenth-century  Irish  mathematician  William  Hamiltonian,  is  a  closed  path  that  visits

every  vertex,  that  is  that  includes  every  vertex  in  G  exactly  once.  If  G  does  admit  a

Hamiltonian circuit, then G is called a Hamiltonian Graph. So here what is the main thing

that it is the closed graph and it visits every vertex in G exactly once. In the case of Eulerian

graph, you use any edge only once. Here we have, we use any vertex only once. You can skip

edge here.
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So let us say for example,  an Eulerian circuit  traverses every edge exactly once but may

repeat vertices. In the case of Eulerian graph, we traverse every edge exactly once but we

may repeat vertices. In the case of Hamiltonian circuit, we visit each vertex exactly once but

may skip edges. We may skip edges. So let us see this figure here, the first figure. So this

figure is a graph which is Hamiltonian but not Eulerian.

Now let us see how it is not an Eulerian graph. So let us say this is A, B, C, D, E and F. Then,

if you want to show that it is an Eulerian graph, we must show that one thing that is, that we

have for an Eulerian graph: A graph is Eulerian if and only if each vertex has even degree. So

let us see whether each vertex has even degree here.

You can see, yeah, this vertex, each vertex does not have an even degree here. You can see,

degree(A)=3 here, degree(E) =3 here, degree(B)=3 here and degree(C)=2, degree(D) =2. And

degree (F) =5, okay. So by the Euler theorem which shows that graph is Eulerian, connected

graph is Eulerian if and only if it has even degree, each vertex has even degree. So here the

vertices A, E and B do not have even degrees. Therefore, this graph is not Eulerian. Now let

us see whether it is a Hamiltonian graph.
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So for Hamiltonian graph what we have said ?. It is a closed path that visits every vertex in G

exactly once and it can skip edges.
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So we can follow the path: A, E, B, C, F, D, A, this path. We go from A to E, E to B, B to C,

C to F, F to D and then D to A. So it is a closed path and uses every vertex only once. It skips

edges AF, EF and BF. So we have skipped the edges AF, BF and EF here. But we have found

a closed path which includes every vertex exactly once, so it is a Hamiltonian graph. Now let

us look at this. It is an Eulerian graph but it is not Hamiltonian.

Let us see why it is Eulerian. Let us say this is A, B, C, D, E, F. Then degree(A) =4. 



degree (B) = 2; degree(C)=4. degree(D)=2. degree(E)=2 and degree (F)=2. So all vertices

have even degrees. All vertices are of even degree and so by Euler theorem, it is Eulerian, the

graph is Eulerian.

Now let us see why it is not Hamiltonian. You see, we cannot find any closed path which

includes all the vertices, A, B, C, D, E, F even if we skip edges. We can follow any closed

path, we will not be able to get all vertices, a path which includes all vertices exactly once. So

let us say if we go from A to B, then we go from B to C, then we come from C to E and then

we come from E to A. So we are using the vertex A twice. If we go from A to B, then B to C,

then C to F, again we will have to come to A. So we are not using exactly once every vertex.

If we can go from A to B, then B to C, then C to D, then D to A, again we are not getting a

path which is using every vertex only once. So this is not a Hamiltonian graph. It is not

Hamiltonian. It is not Hamiltonian graph.
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Now  let  us  see,  only  connected  graphs  can  be  Hamiltonian.  This  we  have  seen,  only

connected graphs can be Hamiltonian. Now there is no simple criterion to tell us whether or

not a graph is Hamiltonian as there is for Eulerian graph. For Eulerian graphs we have seen

the theorem of Euler which says that a connected graph Eulerian if and only if every vertex of

the graph is of even degree. So such a criterion does not exist for a graph to see whether it is

Hamiltonian or not.



There are theorems which give us sufficient conditions for Hamiltonian graph. For example,

let us look at this theorem by A. Dirac. By A. Dirac, it tells that, let G be a connected graph

with n vertices. Then G is Hamiltonian if the number of vertices  ≥ 3 and  degree (v )≥n/2.

degree (v )≥n/2  for  every  vertex  v  in  G.  So  this  is  the  theorem  which  gives  sufficient

conditions to determine whether a given graph is Hamiltonian or not.

Till today we do not know necessary conditions for a graph to be Hamiltonian. Now let us

look at some examples here. So let us consider this graph. We have A, B, C, D, E. Now we

can see here in this graph, the number of vertices is equal to 5. Number of vertices in this

graph is equal to 5. And then degree of each vertex you see, degree(A) =4; degree (B) =4;

degree (D) =4; degree (E) =4; degree (C) = 4; degree of each vertex A, B, C, D is equal to 4.

Now you can see here the number of vertices is five. So number of vertices which is n here in

this theorem that must be more than 3. So number of vertices here is 5, son≥3, so here n is

equal to 5. Hence 5>3. And degree of every vertex, degree (v)= 4 which is greater than 5/2,

that is n/2, and for any vertex v of this graph v is either A, or B, or C, or D, or E. So for each

vertex  we  notice  that  its  degree  exceeds  n/2.  It  is  greater  than  n  /2,  so  this  graph  is

Hamiltonian graph by Dirac’s theorem.

Now let us look at another example. Let us look at this graph. Now here we see there are five

vertices; 1, 2, 3, 4, 5. So number of vertices, n = 5. And degree of, let us see degree of vertex.

degree (x)=2, degree of vertex x is 2. And 2 is not greater than 5/2, and 2 is less than 5/2. So

this condition, n ≤ degree (v), n = 5 here and degree(v) =2, degree of x. v, I am taking as x, so

degree  (x)  =2,  therefore  degree  (v)≥ n/2,  this  condition  is  not  valid  here.  So  we cannot

conclude that this graph is Hamiltonian from this Dirac's theorem because the conditions are

not satisfied.

But we shall notice, we can notice that this graph is Hamiltonian. Because what we have to

see is that it is a path, it is a path which visits each vertex exactly once, so let us see whether

we can do this. So we can follow the path, we can go from y to z, then z to x, then x to v, then

v to w and then w to y. We can skip the edge,  zw . So skipping edge zw we get a path, a

closed path: y, z, x, v, w, y; yz, xv, wy; which visits, which includes every vertex exactly

once. And so, it is a Hamiltonian graph.



So we are not getting this conclusion that it is a Hamiltonian graph by using Dirac's theorem

because in the Dirac’s theorem only sufficient conditions are given to see whether a given

graph is Hamiltonian. We will have to see directly from the definition that it is a Hamiltonian

graph. Okay. Now let us see some more examples.
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So there are  two more theorems.  There are  two more theorems which give us sufficient

conditions for a Hamiltonian graph. So let  us first see the theorem. It says that a simple

connected graph with n vertices and m edges is Hamiltonian if m≥ [ (n−1)(n−2)2 ]+2. This is

the integer part of  [ (n−1)(n−2)2 ].  So  m≥ [ (n−1)(n−2)2 ]+2.  If this condition holds true,

where n is the number of vertices in the simple connected graph and m edges are there, then

the graph will be Hamiltonian.

So let us see for example, let us consider this graph. So we have A, B, C, D, E. So there are

five vertices in this graph, n is equal to 5. And how many edges are there ? 1, 2, 3, 4, 5, 6, 7.

We have AB, BD, AD, AC, EB, we have 8 there. So m is equal to 8, there are 8 edges here in

this figure. So now let us see whether integer part of [ (n−1)(n−2)2 ]+2is less than or equal to

m or not. So this is, n is equal to 5, so [ 4.32 ]+2.



So integer part of 6, so this is 8. So this is  ≥m which is 8. So this graph satisfies the sufficient

condition and therefore it is a Hamiltonian graph. It is a Hamiltonian graph.
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Let  us go to  this  problem: Let  G be a connected  graph with 3 vertices.  Show that  G is

traversable. Find the traversable trail alpha for the graph G where V(G) is equal to A, B, C,

D. Now we have a connected graph with three vertices.
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Then we know that the graph is traversable provided any finite connected graph with two odd

vertices, is traversable. A traversable trail may begin at either odd vertex and will end at the

other odd vertex. So if there are three vertices,  we can enter one vertex which is an odd

vertex. If there are two odd vertices, we can enter one odd vertex and then end at the other



odd vertex. If there are zero odd vertices, then all the vertices of the graph will be of even

degree, so the graph will be traversable.
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So  a  graph  with  three  vertices,  connected  graph  with  three  vertices  will  always  be  a

traversable graph. Because if we have zero vertices which are of odd degree, then all vertices

will be even degree, so it will be traversable. If there is two odd vertices, they are of odd

degree, then we can enter one odd vertex and leave the graph from the other odd vertex. So

the graph with three vertices is always, this thing, traversable.

Now find the traversable trail alpha for the graph G where V(G) is A, B, C, D; E(G) is AC,

AD, BC, BD, CD. So find the traversable trail alpha for the graph G where V(G) is equal to

A, B, C, D. So traversable trail means we have to find a path which includes every edge

exactly once. So we can follow this path: C, A, D, B, C and then this. Yes, so we can start

with C because it is a forward degree. C is a forward degree and D is a forward degree. So we

can end at D and we can start, begin at C. Or we can start with D and end up at C.

So when we have two vertices of odd degree, we can enter one vertex and then leave at the

other vertex. So we can follow the path, traversable trail. Traversable trail could be, alpha

here is C, A, D, B, C, D. Okay, this is one traversable trail. The other traversable trail could

be, alpha could be taken as, we can start with D, so we have, we will enter at D and leave at

C. So we will have D, B, C, A, D, C. We enter at D and then move along DB, then BC, then

CA, and then AD and then C. So we enter at D and leave at C. So this is another traversable

trail.
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Show that one can add or delete loops from a multigraph G and graph G remains traversable

or non-traversable. The degree of a vertex v in G is increased or decreased by two according

as one adds or deletes a loop at v. If you add or delete a loop at vertex v, then if you add, you

add it degree 2 to the graph to the vertex. And if you remove or delete one loop at vertex,

then you decrease the degree there by 2.

So thus, the parity, evenness or oddness of the vertex v is not changed. If it was of even

degree, it will remain of even degree. If it was of odd degree, it will remain of odd degree. So

the condition that G has zero or two odd vertices, because G remains traversable or not, G is

traversable means it has zero or two vertices, or if it is not traversable, then it is having other

than that. So it is not changed by adding or deleting loops.

If it has zero odd vertex or two odd vertices, then the nature of the vertex whether it was even

or  odd is  not  changed  by adding  or  deleting  a  loop.  And  therefore  the  graph  if  it  was

traversable, it will remain traversable. If it was not traversable, it will remain non-traversable

graph. So that is all in this lecture. Thank you very much for your attention.


