Higher Engineering Mathematics Professor P. N. Agrawal Department of Mathematics Indian Institute of Technology Roorkee Lecture - 18 Lattices - V

Hello friends, welcome to my lecture on Lattices. Let us define again complemented lattice because we will be showing that the dual of a complemented lattice is again complemented.

(Refer Slide Time: 00:40)

So, let L be a lattice with the operation \leq and it has a universal bounds 0 and 1, 0 is the least element of the lattice, 1 is the greatest element, then the lattice L is called complemented if every element in L has a complement.

Now, let us proved that dual of a complemented lattice is complemented. Ok, so let L with the operation R, ok be a complemented lattice with 0 and 1 as least and greatest elements, ok. Let (L, R) be the (L, \hat{R}), ok (L, \hat{R}) these bar here, (L, \hat{R}) be the dual of (L, R) then 1 and 0 are the least and greatest elements of (L, \hat{R}), ok. Let, $a \in L$, we are going to show that (L, \hat{R}) is also complemented.

So 0 is 0Ra zero related to a, zero related to a', ok and a related to 1, and a' related to 1, ok because 1 is the least upper bound of a and a', so aR1 we have a' R1 we have. Now, 0Ra means a \hat{R} 0, ok a \hat{R} 0 because \hat{R} is the complement of R, ok and \hat{R} is the dual of R, ok. So, 0Ra' means a' \hat{R} 0, and aR1 means 1 \hat{R} a, a' \hat{R} 1 means 1 \hat{R} a', and from here it follows that 0 is an upper bound of a and a' in (L, \hat{R}) and from here it follows that 1 is a lower bound of a and a' in (L, \hat{R}) ok.

Now, what we are going to show? We are showing that 0 is the least upper bound of (L, \dot{R}) and 1 is the greatest lower bound of (L, \dot{R}) so what we will do?

(Refer Slide Time: 03:21)

Let us consider k to be any upper bound of (a, a'i, ok k then we shall show that 0 is the least upper bound, so we shall show that $0\dot{R}$ k, ok, yeah. So, let k be any upper bound of (a, a'i in (L \dot{R}) then a \dot{R} k and a' \dot{R} k hold true, ok. Now, a \dot{R} k and a' \dot{R} k implies kRa and kR a', ok. Now, yes so from here, ok k is the lower bound, k is a lower bound of a and a' in (L, R), k is a lower bound of (a, a'i in (L, R) ok in (L, R) now , 0 is the greatest lower bound in (L, R) ok.

So, what will happen? k will be kRo will occur, ok because 0 is the greatest lower bound, so kR will be k related to o, kRo but kR0 means $0\hat{K}$ k, ok kR0 means $0\hat{K}$ k and therefore it follows that 0 is the least upper bound in (L, \hat{K}) ok 0 is the because \hat{k} any upper bound and it follows that $0\hat{K}$, so 0 is the least upper bound in (L, \hat{K}).

(Refer Slide Time: 05:24)

Thus 0 is lub of $\{a, a'\}$ in (L, \overline{R}) . Hence $a \lor a' = 0$ in (L, \overline{R}) . Similarly, $a \land a' = 1$ in (L, \overline{R}) . Thus a' is complemented of a in (L, \overline{R}) . Hence (L, \overline{R}) is complemented.

Now, hence $a \cup a'$, ok $a \cup$, because 0 is the least upper bound in (L, \hat{R}) , ok. So $a \cup a' = 0$, ok because $a \vee a'$ is nothing but least upper bound of a and a', so a and a' $\vee a'$ is = 0 in (L, \hat{R}) Similarly, we have to we can show that $a \wedge a' = 1$ in (L, \hat{R}) by following by proving on along the similar lines, so thus a' is complement of a in (L, \hat{R}) ok hence (L, \hat{R}) is complemented. Because we have shown that a' satisfies the property that $a \vee a' = 0$ in (L, \hat{R}) and $a \wedge a' = 1$ in (L, \hat{R}) ok. So a' is the complement of a in (L, \hat{R}) hence therefore (L, \hat{R}) is complemented lattice. (Refer Slide Time: 06:38)

Now, let us define modular lattice, a lattice L is called modular if you take any a, b, c in L then $a \le c$ implies that $a \lor (b \land c) = (a \lor b) \land c$.

(Refer Slide Time: 06:56)

			a'	eo, cea
				themple
Example: The figure (d) will b	lattice given by the follow	wing diagrams are	modular. The la	attice in
ingene (u) tim b	e denered de latite hig.		OL	a,all
	(d)	\Rightarrow	Let	c=1 alc
(d)(d)	(0)	(1)		AV (bAC)
(INV)		all'=) av(b	AC)= (AVB)AC	= avb
- avb	. 217	and c=a		1
	(avb) AC	then a LL	av(bAc)	bAC
	= (0 × b) ~ = bna		= 0 V (BAC) =	= bAR
	NLINE CATION COURSE			

Modular Lattices A lattice L is said to be modular if for all a, b, c in L $a \le c \Rightarrow a \lor (b \land c) = (a \lor b) \land c.$

Lattice given by the following diagrams are modular, ok the lattice in figure d, this lattice is denoted by M_5 , there are you can see 5 elements here {0, a, b, c, 1,} ok so we call it lattice M_5 here we have {0, a, 1, b}ok you take any three elements here in the in case in the first case, ok {a, b, c} if $a \le c$, $a \le c$ then we have this property, ok $a \le c$ implies $a \lor (b \land c) = (a \lor b) \land c$, ok.

For example, let us say I take a =0, ok a =0 and then c = a, ok here in this figure, ok let us take a =0 and c =a then what happens a is then $a \le c$, ok $a \le c$ and what is this here? Third element b we can take as let us say any other element, ok any other element then what will happen if I take b to be any other element, then a, a is what? a is 0, ok $0 \lor b \land c = b \land c$, ok c = a, so we get $b \land a$, ok $b \land a$ and what is the right hand side? $a \lor b \land c$, ok a is 0, ok $0 \lor b \land c = b$ or $c \lor c$ we have, $0 \lor b = b$, ok then $\land c$ we have, ok and c =a, so we get $b \land a$, so the both sides are equal.

So, whenever $a \le c$, ok from this figure we can see that this result holds, ok and then therefore this one is a this lattice is a modular. Now, here but what happens is we have $\{0, 1, a, b, c\}$, a, b, c are symmetric, ok here so we can take say, so we will have 0 i a, and a i 1, ok. So, what we will do? We let us take a let us $a \le c$, ok let us take $a \le c$, so let us take c to be equal to 1, ok then $a \le c$ and ok.

Now, what will happen? Let us see, $a \lor (b \land c)$, ok b is any other element, ok now a is a, then we have $a \lor b \land c$, c=1, ok right so this is equal to $a \lor b \land 1$ equal to 1, ok so we get $a \lor b$, ok $a \lor b$ we will get, right. Now, let us say the right hand side, right hand side is how much?

 $(a \lor b) \land c$, ok c is 1, ok so $(a \lor b) \land 1$, ok and $(a \lor b) \land 1 = a \lor b$, ok so both sides are equal, so this is again modular, ok.

Now, next choice could be that you take a as 0, ok a = 0 and c =a, then this will occur this a \leq c, ok 0 $\stackrel{?}{\circ}$ c will occur, and again we can show that this result holds, ok so they are both lattices this is called lattice 5 denoted by lattice M_5 .

(Refer Slide Time: 12:27)

Now, let us show that pentagonal lattice is non-modular. Let us consider this pentagonal lattice, we want to show that it is not modular, ok so we have to show that this equation does not hold $a \le c$, ok we have to show that $a \le c$ whenever $a \le c$ we should have $a \lor (b \land c) = (a \land c)$

 \vee b) \wedge c, ok. Let us take here, let a_2 = a, ok and a_1 =c, ok then a i c, ok a_2 i c, as a_2 i a_1 , so a \leq c.

Now, let us look at the values of these expression, so a $\lor(b \land c)$, ok b $\land c$, b let us take to be a, this is my a, this is c that take the this a_3 to be b, ok $a_3 = b$, then what we will have here? So a is a_2 , ok so a is a_2 , so $a_3 \lor b$ is what? b is a_3 , ok $\lor c$ is a 1, ok. So, $a_3 \land a_1$ means greatest lower bound of a_3 and a_1 , ok this is a_3 , this is a_1 greatest lower bound of a_3 and a_1 is 0.

So, we get a 2 \vee 0, ok and 0 is the greatest lower bound, ok so a 2 \vee 0 is the it is the least element a 2 \vee 0 equal to a_2 , ok $a_2 \vee 0 = a_2$. Now, let us see right side , a \vee (b \wedge c), ok a \vee b \wedge c means $a_2 \vee$ b means a_3 or \wedge c, c is a_1 , ok. So $a_2 \vee a_3$ means least upper bound of a_2 and a_3 least upper bound of a_2 and a_3 is 1, ok so 1 \wedge a_1 , ok.

Now, here we are getting $1 \wedge a_1$, and $1 \wedge a_1$, yeah $1 \wedge a_1$, means greatest lower bound of 1 and a_1 , so be this is equal to a_1 , ok. So, here we get a_1 , here we get a 2 and you see that a_1 , is a strictly succeeding a 2, ok a 1 strictly succeeds a_2 , so the two are not equal, a_2 here, a_1 here, so they are not equal. $a \vee b \wedge c$ is not equal to $a \vee b \wedge c$ when we choose $a_2=a$, $a_1=c$ and $a_3=b$, so this is lattice is not modular.

(Refer Slide Time: 16:11)

We know that a	cham lattere
L	then if e, b, CEL
a	V(bAC)-(avb)A(avc)
27	asc them ave= c
	hence av (bAC)= Evolution
	LUAMAN

Now, every chain is a modular lattice, we have shown that every chain, chain is a distributive lattice, ok we know that every chain is a distributive lattice, ok. So if you take a let L be a

chain then if a, b, $c \in L$ then $a \lor (b \land c) = (a \lor b) \land (a \lor c)$, ok. Now if $a \le c$, ok $a \le c$, then $a \lor c = c$, ok hence $a \lor (b \land c) = (a \lor b) \land c$ because this is equal to c, ok so the L is a modular lattice.

(Refer Slide Time: 17:42)

heorem: A su	blattice of a modular lattice is modular.
Proof: Let S be	a sublattice of a modular lattice L.
Let $a, b, c \in S$ a	and $a \preceq c$ then since $S \subset L$ we have $a, b, c \in L$ and $a \preceq c$
	$\Rightarrow a \lor (b \land c) = (a \lor b) \land c.$
Since S is close	d w.r.t U and the above result holds in S and hence S is modular.
	ainithen briefs
	& a V u

Now, a sublattice of a modular lattice is modular, let S be a sublattice of a modular lattice, ok you take a, b, $c \in S$, ok let a, b, $c \in S$ and $a \le c$, ok then because S is a subset of L, ok so a, b, $c \in L$ and we have assume that $a \le c$, ok therefore L being modular it follows that $a \lor (b \land c) = (a \lor b) \land c$ and therefore S is modular because S is closed with respect to S is closed with respect to the \lor and \land operations, ok.

We are given that S is a sublattice, so if a, b, $c \in S$, ok then $b \land c \in S$, and $a \lor b$ it also $\in S$, ok. So, since S is closed with respect to \lor and \land operations, ok this result holds in S and hence S is modular.

Now, dual of a modular lattice is modular, let us see let this be a modular lattice, ok then we have to prove that this is also modular because this is the dual of this operation, ok so let a, b, $c \in L$ and , $a \ge c$, you can let us say this is succeed c, ok $a \ge c$, then $c \le a$, ok then $c \le a$, and so $c \lor (b \land a)$ will be equal to we can write it as now this is equal to this, and this equal to $c \lor b$, ok by this we can write $c \lor b$, yeah by because L is a modular lattice because of that, yeah because of that $c \le a$ when $c \le a$ then yeah, ok because we had this if $a \le c$, ok then $a \lor (b \land c)$ was equal to $(a \lor b) \land c$, ok.

Now, what is happening is that we are having $c \le a$, ok so this will imply that $c \le a$, so this will imply that $c \lor (b \land a) = (c \lor b) \land a$, ok we have to interchange. So this $c \lor (b \land a) = (c \lor b) \land a$, ok. Now, what? We know that complementary laws hold, this commutative law holds in a lattice, ok so what we have? $b \land a = a \land b$, so this implies $c \lor (a \land b)$ equal to and again $c \lor b = b \lor c$, so this is equal to this, ok so this is equal to this, and then $\land a$, ok.

Now, what we do? Now this side, ok here again we used commutative law, so $b \lor (c \land a) = a \land (b \lor c)$, ok so we have $a \land b \lor c$ and here we have again commutative law, so this is $a \land b$ and then $\lor c$, ok so this implies this, and this implies this. So this proved that this is modular because in order to prove that this is modular we have to show that if $a \ge c$, ok then $a \land$, because here we have a yeah this is dual case, so $a \land (b \lor c) = (a \land b) \lor c$, ok, so because of duality, ok so this duality this the operations have also been interchanged, in the case of L, I mean L being a modular lattice we had $a \lor (b \land c) = (a \lor b) \land c$.

Now, we have to prove that $a \land (b \lor c) = (a \land b) \lor c$, ok. So, thus we have shown that dual of a modular lattice is modular, with that I would like to end this lecture, thank you very much for your attention.