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Lattices II

Hello friends, welcome to my lecture on Lattices. This is second lecture on lattices. Let us

prove some properties  of  lattices.  The theorem,  this  theorem we have proved in the last

lecture. 
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If L be a lattice, then for every a and b in L, a ˅ b = b if and only if a precedes b. a ˄b = a if

and only if a precedes b. a ˄ b = a if and only if a ˅ b = b. This we had proved in the last

lecture.
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Now let us go to the second theorem. If L be a lattice, then for every a, b, c belonging to L a

˅ a = a, a ˄ a = a. These are idempotency laws. Then a ˅ b = b ˅ a, a ˄ b = b ˄ a, these are

commutativity laws. Then a ˅ (b ˅ c) = (a ˅ b) ˅ c and a ˄ (b ˄ c) = (a ˄ b) ˄ c, these are

associativity laws. And then we have the absorption laws. So a ˅ (a ˄ b) = a and a ˄ (a ˅ b) =

a. These are absorption laws. 

Let us prove these properties of a lattice. So let us say, first (a)  part. a ˅ a. By definition a ˅ a

= least upper bound of {a, a}, Ok. So this is least upper bound of {a} which is equal to a, Ok.

So a ˅ a = a. Similarly a ˄ a = greatest lower bound of {a, a}. Greatest lower bound of {a}, is

= a, Ok. Now let us prove, so this is part (b). Let us do 2(a) part. So a ˅ b = b ˅ a, Ok. 

So a ˅ b = least upper bound of {a, b}. Least upper bound of a comma b is same as least

upper bound of {b, a}. Ok so we have b ˅ a, Ok. Similarly a ˄ b = greatest lower bound of{ a,

b} which is  = greatest  lower bound of {b, a}.  So we have b ˄ a,  Ok. So these two are

commutativity laws, Ok and these two are, the first two are idempotency laws.

Now let us show 3(a) part, Ok so 3(a) part. We have to prove that a ˅ (b ˅ c) = (a ˅ b) ˅ c,

Ok. So a ˅ (b ˅ c)= least upper bound of a and b ˅ c, Ok. 

So since it is least upper bound of a and b ˅ c, so a precedes, a precedes, a ˅ (b ˅ c), Ok. And

similarly

 b ˅ c precedes a ˅ (b ˅ c)………………..(1)



 Now b ˅ c is least upper bound of b and c, Ok. So b precedes b ˅ c and 

c precedes b ˅ c…………………………………(2)

 Ok. So let us call  this as equation number (1), this as equation number (2), Ok. Then c

precedes b ˅ c and b ˅ c precedes a ˅ (b ˅ c). So by antisymmetry we have c precedes b ˅ c.

b ˅ c precedes a ˅ (b ˅ c). So c precedes a ˅ (b ˅ c). 

Now, now further we have 

a precedes a ˅ (b ˅ c)……………………..(3)

 Ok and b precedes, so this is this equation and this equation, Ok. Let us consider now a

precedes a ˅ b ˅ c, Ok and b precedes b ˅ c and b ˅ c precedes a ˅ (b ˅ c), Ok. b precedes b ˅

c. b ˅ c precedes a ˅ (b ˅ c). So again by antisymmetry this implies 

b precedes a ˅ (b ˅ c)………………………(4)

 Now let us call them as equations (3) and (4), Ok. So from (3) and (4), we find that a ˅ (b ˅

c)  is an upper bound of, upper bound of a and b. And therefore a ˅ b, a ˅ b is the least upper

bound of a and b, so a ˅ b precedes a ˅ (b ˅ c), Ok. 

Now what do we notice? Let us consider this. 

a ˅ b precedes a ˅ (b ˅ c)…………………….(5)

 And 

c precedes a ˅ (b ˅ c)……………………….(6)

 So a ˅ (b ˅ c) is an upper bound of a ˅ b and c. So this is, I can call this as 5 and this as 6. So

from 5 and 6, (a ˅ )b ˅ c precedes a ˅(b ˅ c), Ok. (a ˅ )b ˅ c precedes a ˅(b ˅ c). And

similarly we can show a ˅ (b ˅ c) precedes (a ˅ b) ˅ c. 

Then we can use antisymmetry, Ok. (a ˅ b) ˅ c precedes a ˅ (b ˅ c) and (a ˅ b) ˅ c precedes a

˅ (b ˅ c). So by antisymmetry then, antisymmetry (a ˅ b) ˅ c = a ˅ (b ˅ c), Ok. This is how

we establish the 3(a) part. 3(b) part can be similarly proved, Ok. Now let us go to the 4(a)

part, Ok. In the 4(a) part we have to prove absorption law, absorption law. So a ˅ (a ˄ b) = a.

a ˅ (a ˄ b) = a, this is what we have to prove, 
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Ok a ˅ (a ˄ b) = a, we have to show this. So here we notice that, Ok, alright, Ok. So a ˅ (a ˄

b) = l u b of a and a ˄ b, so a is preceded by, a precedes, sorry 

a precedes a ˅ (a ˄ b)……………………..(1)

 Ok. a precedes a ˅ (a ˄ b). Now let us show that, Ok, now let us show that a ˅ (a ˄ b)

precedes a, Ok. a ˄ b, a ˄ b = g l b of a and b, Ok. So a ˄ b precedes a, Ok. Also a precedes a,

Ok. So a is an upper bound of, Ok so a is an upper bound of a ˄ b and a, Ok and therefore,

 a ˅ (a ˄ b) precedes a……………………..(2)

 Ok.  So  we  have,  this  is  equation  1,  and  this  is  equation  2,  Ok.  So  from 1  and  2  by

antisymmetry a ˅ (a ˄ b) = a. Similarly we can prove the other absorption law. a ˄ (a ˅ b) =

a.
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Now let us go to next theorem. Let L precedes be a lattice, then for every a, b, c, d belonging

to L a precedes b implies a ˄ c precedes b ˄ c, Ok. So let us consider (a ˄ c) ˄( b ˄ c) Ok.

What we are going to do is this. In order to prove that a ˄ c precedes b ˄ c, we will use the

first theorem here, this theorem, Ok. a ˄ b = b if and only if a precedes b, Ok. So a ˄ b = b if

and only if a precedes b, Ok. So we are going to use this theorem. In order to prove that a, a ˅

c precedes b ˅ c, we simply have to show that (a ˅ c) ˅ (b ˅ c) = b ˅ c. 

Let us consider this. If we show, if we show that (a ˅ c) ˅ (b ˅ c) = b ˅ c, then using this

result, Ok, then from a ˅ b = b  ⇔ a precedes b. It will follow that a ˅ c precedes b ˅ c, Ok. So

let us prove this, Ok. (a ˅ c) ˅ (b ˅ c), we can consider, we can write it as (a ˅ c) ˅ (c ˅ b),

because of the commutative law, b ˅ c = c ˅ b and by the associative law I can write it as a ˅

(c ˅ c )˅ b, Ok.  a ˅ (c ˅ c) ˅ b. 

Now c ˅ c = c, Ok c ˅ c equal c. So a ˅ c ˅ b, Ok. Right, now a ˅ c, we have to consider a ˅

c, Ok. c ˅ b, we have a, we have a, we have not made use of this, a this, Ok this implies a ˅ b

= b, Ok So I can write it as...again use associative law, Ok. I can write it as a, Ok I can write

it as a ˅ c ˅ b, c ˅ b I can use commutative law so a ˅( b ˅ c), Ok. Now I can write it as,

using associative law, (a ˅ b) ˅ c, Ok. And a ˅ b = b because a precedes b. So b ˅ c, Ok. So a

˅ c, (a ˅ c) ˅ (b ˅ c) = b ˅ c so this implies that a ˅ c precedes b ˅ c. Similarly we can prove

a precedes b implies a ˄ c precedes b ˄ c. 
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Now let us prove the distributive inequality. a ˄ b, let us prove a ˄ (b ˅ c) succeeds (a ˄ b) ˅

(a ˄ c), Ok. Or we can say; we have to show (a ˄ b) ˅ (a ˄ c) precedes a ˄( b ˅ c), Ok. So if

we can show that, if we can prove that a ˄( b ˅ c), is an upper bound of, of a ˅ b and a ˅ c. If

we can prove that a ˄( b ˅ c), is an upper bound of a ˄ b and a ˄ c, then a ˅, (a ˄ b) ˅ (a ˄ c),

Ok will be, will precede a ˄( b ˅ c), because this is nothing but the least upper bound of a ˄ b

and a ˄ c, Ok

Now to show, that means we have to show that a ˄ b precedes a ˄( b ˅ c),, Ok and we have to

show that  a ˄ c precedes a ˅, sorry a ˄( b ˅ c), Ok. So we have to establish this. Now a ˄ b,

we have to show that a ˄ b is, precedes a ˄ b, Ok so we have b precedes b ˅ c, Ok. b

precedes b ˅ c. Ok so we can use now this property, this one, this one we have to get, we

have to get ˄, Ok. 

So if a precedes b then a ˄ c precedes b ˄ c, Ok. Let us use this property of the last theorem,

Ok. So then a ˄ b precedes a ˄( b ˅ c), Ok by the preceding theorem. Similarly we can say

that, similarly c precedes b ˅ c, Ok. So by the preceding theorem a ˄ c precedes a ˄( b ˅ c),,

Ok. Thus we see that a ˄ b precedes a ˄( b ˅ c), and a ˄ c precedes a ˄( b ˅ c),, Ok. So a ˄( b

˅ c), is an upper bound for a ˄ b and a ˄ c, Ok. And therefore the (a ˄ b) ˅ (a ˄ c) which is

the least upper bound of a ˄ b and a ˄ c is ≤ a ˄ (b ˅ c), Ok. So this is what, this is how we

prove this result. A similar argument we can give for the proof of the other one. 
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Now let us go to principle of duality. We observe that precedes is a partial order on any set, 

Ok  then  its  inverse  relation  succeeds  is  also  a  partial  order.  This  can  be  easily  shown.

Suppose S is a set,  Ok and it is a poset with this partial  order, Ok, then first property is

reflexive.  a precedes a for any a belonging to S, Ok. The second one is antisymmetry.  a

precedes b and b precedes a implies a = b, Ok and third one is transitivity, Ok. So a precedes

b and b precedes c implies a precedes c, Ok. 

Now let us show that S succeeds is also a poset. Let us prove, Ok. So a precedes a means a

succeeds a, Ok. So first thing is reflexive. a succeeds a for every a belonging to S because a

succeeds a for every a belonging to S, Ok. Second thing antisymmetry, let a succeeds b and b

succeeds a, Ok then we have to prove that a = b. Now a succeeds b means b precedes a and, b

succeeds a means a precedes b, Ok. 

So a precedes b and b precedes a, Ok using the antisymmetry, Ok. This implies that a = b. Ok

we can use  this  result  now.  This,  that  S  is  a  poset  with  this  notation,  Ok and similarly

transitive. Let us say a precedes b and b precedes c, Ok. Then, no sorry, let a succeed b and b

succeed c. Then b precedes a and c precedes b, Ok. Now we apply the transitive property

here,  Ok. So c precedes  b and b precedes  a implies  that  c  precedes  a.  Or we can say a

succeeds c, Ok. 

So let a succeed b and b succeed c, let a succeed b and b succeed c then a succeed c. So this is

true for all a, b, c belonging to S, Ok and therefore if this is a partial order, this one is also a

partial order on S. Now it follows from the definitions that the l u b of {a, b} with respect to



this, l u b of, it is clear that l u b of {a, b} with respect to this order, precedes is g l b of {a, b}

with respect to this order, Ok. So, and vice versa. So thus the former principle of duality for

lattices says that if we interchange, ˅ and ˄ and precedes and succeeds in a true statement

about lattices, we get another true statement. And corresponding statements are called dual of

each other. 
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So you can see here, where we have written these, yeah, you can see we have this result, Ok.

We can interchange, Ok ˅ and, in order to write this, we can interchange ˅ and, by ˄, Ok.

And then we get the corresponding commutative law, commutative law for this one. And

similarly here you can interchange ˅ and ˄, Ok, here ˅ and ˄ and we get the other absorption

law. So, so we can say that this is dual of this one, Ok this is dual of this one. And this is dual

of this one. So they are dual of each other. 
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Now the direct product of two lattices is a lattice. Let us see, let  L1 and L2. be two lattices,

Ok. Then L1 × L2, we define as (x, y) such that x belongs to L1 , y belongs to L2.

Ok. We will first prove that, let us say (x1 ,y1) and (x2 ,y2)   belong to L1  × L2. Then let us

define (x1 ,y1) precedes (x2 ,y2)   if x1  precedes x2 and y1 precedes y2  x1 precedes x2 in L1

and y1 precedes y2 in L2. 

Now although we are using the same notation, but they are not same. In different, in L1 and

L2 , they mean different, they have different meanings, Ok. So convenience we are using the

same notation. So (x1 ,y1) precedes (x2 ,y2)   if and only if  x1   precedes  x2 in  L1  and  y1

precedes y2  in L2. Let us define order like this, and then we will prove that L1  × L2 is a poset

with this definition. So we show that L1  × L2 is a poset, Ok. 

So first thing is reflexive, Ok. So we show that, let (x1 ,y1), (x1 ,y1) precedes (x1 ,y1) . First

we have to show this for every (x1 ,y1) belonging to L1  × L2, Ok.So (x1 ,y1) precedes (x1 ,y1)

will be true because x1 precedes x1 in L1  and y1 precedes y1 in L2 . So since x1precedes x1 in

L1,  and  y1 precedes  y1 in  L2,  Ok because  L1  and  L2 are lattices,  it  follows that (x1 ,y1)

precedes (x1 ,y1) whenever (x1 ,y1) belongs to L1 × L2. So this is reflexive property.

Then we have antisymmetric. So let us assume that (x1 ,y1) precedes (x2 ,y2)  and (x2 ,y2)

precedes (x1 ,y1). Then we have to show that (x1 ,y1) = (x2 ,y2) . So (x1 ,y1) precedes (x2, y2)



means x1  precedes x2, y1 precedes y2  . And (x2 ,y2)  precedes (x1 ,y1) means x2 precedes x1

and  y2 precedes  y1,Ok.Now  x1 precedes  x2 and  x2 precedes  x1,  Ok  implies  that  x1=  x2

because L1  is a lattice. And similarly y1 precedes y2 and y2 precedes y1 implies that y1= y2

because L2 is a lattice. 

Now let us prove transitive, Ok. So let (x1 ,y1) precedes (x2 ,y2)  and (x2 ,y2)  precedes x3, y3,

Ok. Then x1  precedes x2, y1 precedes y2  , Ok. x2 precedes x3, y2 precedes y3, Ok. Now L1

is a lattice. So x1  precedes x2 and x2 precedes x3implies that x1  precedes x3, 

Ok. And similarly  y1 precedes  y2 and y2 precedes  y3, implies that  y1 precedes  y3. Now x1

precedes  x3and  y1 precedes  y3and therefore (x1 ,y1) precedes (x3,  y3). Ok and so we have

shown that in L1  × L2, if we define order by this, (x1 ,y1) precedes (x2 ,y2)  if and only if x1

precedes x2 in L1  and y1precedes y2 in L2. Then L1  × L2 is a poset, Ok. So hence L1  × L2 is

a poset. Now we shall show that  L1  × L2is a lattice. So now let us prove that  L1  × L2is a

lattice  , Ok. 

(Refer Slide Time: 31:52)

So let (x1 ,y1) and (x2 ,y2)  belong to L1  × L2. We shall show that (x1 ,y1) ˅ (x2 ,y2) = (x1  ˅

x2,  y1 ˄ y2), Ok. And (x1 ,y1) ˄ (x2 ,y2)  = (x1  ˄ x2,  y1 ˄ y2). Ok. So since L1  and L2are

lattices, Ok, x1  ˅ x2, belongs to L1 , x1  ˄ x2,  belongs to L1 ., y1 ˅ y2belongs to L2and y1 ˄ y2

belongs to L2. And therefore (x1 ,y1) (x1 ,y1) ˅ (x2 ,y2)  belongs to L1  × L2and (x1 ,y1) ˄ (x2 ,

y2)  belongs to L1  × L2.



So since x1, x2,  belongs L1, x1  ˅ x2 and x1  ˄ x2, , they belong to L1, Ok. 

And similarly y1, y2 belongs to L2 . So y1 ˄ y2, and y1 ˄ y2belongs to L2 , Ok. And this will

then imply that (x1 ,y1) ˅  (x2 ,y2)  belongs to L1  × L2. And (x1 ,y1) ˄ (x2 ,y2)  belongs to L1

× L2 . So we just have to prove this, Ok, and this. Ok if we can prove that they are equal, then

L1  × L2 will be a lattice. Ok so in order to prove this, we know that, first we shall show that (

x1 ,y1) ˅ (x2 ,y2) ; (x1 ,y1) ˅ (x2 ,y2)  this is least upper bound of (x1 ,y1) and (x2 ,y2) . 

So first we shall show that x1 ˅ x2, y1 ˅ y2is an upper bound of (x1 ,y1) ˅ (x2 ,y2) , Ok, (x1 ,y1

)  and (x2 ,y2) , Ok So x1 precedes  x1 ˅  x2, Ok. And y1 precedes  y1 ˅  y2, Ok. So (x1 ,y1)

precedes x1 ˅ x2 and y1 ˅ y2, by your definition, Ok, alright. Similarly x2 precedes x1 ˅ x 2, y

2 precedes y1 ˅ y2, Ok. So (x2 ,y2)   precedes (x1 ˅ x2 ; y1 ˅ y2). 

 Thus what do we notice? (x1 ˅ x2 ; y1 ˅ y2) is an upper bound for (x1 ,y1) and (x2 ,y2) . And

hence (x1 ,y1) ˅  (x2 ,y2)  precedes (x1 ˅ x2 ; y1 ˅ y2).  Ok it is an upper bound for (x1 ˅ x2 ;

y1 ˅ y2), it is an upper bound, (x1 ˅ x2 ; y1 ˅ y2) is an upper bound of (x1 ,y1) and (x2 ,y2) . So

(x1 ,y1) ˅ (x2 ,y2) , because (x1 ,y1) ˅ (x2 ,y2)  is the least upper bound of (x1 ,y1) and (x2 ,y2

) . So it has to be less than or  equal to this, Ok.

Similarly we can prove that (x1 ˅ x2, y1 ˅ y2) precedes (x1 ,y1) ˅ (x2 ,y2) , Ok. And therefore

they are equal. So x1, so hence by antisymmetry(x1 ,y1) ˅ (x2 ,y2)  =(x1 ˅ x2, y1 ˅ y2)  , Ok so

this is proved, Ok.Similarly we can show then (x1 ,y1) ˄ (x2 ,y2)  = (x1  ˄ x2, y1 ˄ y2). And

that proves that the least upper bound of (x1 ,y1) and (x2 ,y2)  is there in L1  × L2. And greatest

lower bound (x1 ,y1) and (x2 ,y2) is also there in L1  × L2 . And therefore L1  × L2is a lattice. 
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Now let L and M be two lattices shown in the figure below, (a) and (b), Ok. Then L × M is a

lattice shown in figure (c). You see x1, x2this is the lattice L. And this is the lattice M, y1, y2,

y3, y4. Then, then as we have seen (x1, y1¿precedes (x2, y2¿if and only if x1 precedes x2, y1

precedes y2. So using this definition, Ok, L × M, we can write L × M. See (x1, y1¿precedes (

x2,  y2).  (x1,  y1¿ precedes  (x1,  y3¿ ¿,  Ok and  ¿ ¿,  y1¿¿also  precedes  (x1,  y4¿.  Ok.(x1,  y1)

precedes  x2,  y1because  x1 precedes  x2and y1precedes  y1, reflexive property, Ok. So (x1,  y1

)lies  below (x2,  y1¿,  Ok.  It  precedes  (x2,  y1).  And then  ¿,  y1)  precedes  (x2,  y2).  ¿,  y1)

precedes (x2, y3). And further ( x2, y2) precedes (x2, y4¿. (x2, y3) precedes ¿ ¿, y4). So this is

the figure for L × M. 
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Now let us say, let L and M be two lattices. A mapping f from L into M is called a join

homeomorphism if f (x ˅ y) = f (x) ˅ f (y) meet- homeomorphism if f(x ˄ y) = f (x) ˄ f (y),

order homeomorphism if x precedes y implies f (x) precedes f(y). Now this precedes is not

the same as the precede here, because this precede is for L and this precede is for M which

can be different.

That is, it preserves the partial order, that is this, order homeomorphism means f will be said

to have order homeomorphism if it  preserves the partial  order. x precedes y implies f (x)

precedes f(y). And this should hold for all  x,  y belonging to L. The mapping f  is  called

homeomorphism  if  it  is  both  join  homeomorphism  and  meet  homeomorphism.  If

homeomorphism is bijective, that is one-one, onto then f will be called an isomorphism. And

if there is an isomorphism from L to M then L and M are said to be isomorphic.
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Now let us look at this. Let L be, L1 be the lattice D6. D6. is divisor of 6, so we have {1, 2, 3,

6}. Let us draw the Hasse diagram, 1, 2, 6 Ok so 1, 2, 6 and we have 3 here, Ok, so 3 divides

6. So we have 1, 2, 6, 3, Ok. And  L2 be the lattice P (S). P (S), power set of S and we have

the order relation inclusion, Ok. S ={a, b} so S ={ a, b}  here. So P (S) = {  Φ, {a}, {b}, {a

b}} Ok. We have to show that the two lattices are isomorphic.

So what we do is let us define a function f from  D6. to P( S), Ok as f (1) = Φ, f(2) = a, f (3) =

b, Ok  f( 6)={ a, b}. Ok. Then we can draw a Hasse diagram for this P (S). This is Φ here,

and this is {a} this is [b}, and this is {a, b}.  Ok so this 1 goes to Φ here, Ok, 2 goes to [a}, 3

goes to [b}, and 6 goes to {a, b}, Ok.And clearly f is one-one, onto, Ok, f is one-one, onto so

there exists a bijection f from D6. to P (S)  this  L1 to L2, Ok.So f is a map bijection from  L1to

L2. Instead of D6. we should write  L1, L2 Ok and therefore since there exists a bijection from

L1 to L2, the two lattices are isomorphic. 
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So now let us say, let L be this set 1, 2, 3, 4, 6, 12. We consider the two lattices, L with

divisibility relation, L with less than or = where (L, |) notation is for divisibility on L and

(L ,≤)  notation is the usual, less than or = relation on L. We have to show that the two are not

isomorphic. So we have to show that L, in order to show that it is isomorphic  we have to

show that it is, the two things we have to show, join homeomorphism, meet homeomorphism

and there is a bijection. So let us show that, meet homeomorphism is not true here, meet

homeomorphism does not exist, Ok. 

So let us see. Suppose f is a mapping from (L, |)  to (L ,≤)   then what we will see? Let us

consider f (3 ˄ 4), f (3 ˄ 4) let us consider, Ok. Then f (3 ˄ 4), f is a mapping from L to L. L

with divisibility and the other one is L with less than or  equal to, Ok. So f (3 ˄ 4), a ˄ b in

the case of divisibility is greatest common divisor of a and b, Ok. So greatest common divisor

of 3 and 4 is 1. So we have f( 1), Ok. 

And right side we have f (3 ˄ 4)  = f( 3)˄ f( 4). Now what is f (3) ˄ f (4) ? f (3) ˄ f (4)  =

either f (3) or f (4), Ok because this ˄ here and in this set is less than or  equal to. The relation

is less than or =. So f (3) will be less than or equal to f( 4), Ok or f( 4) will be less than or

equal to  f (3), Ok in the case of, less than, so less than or  equal to, so either f (3) will be less

than or equal to f (4), or f (4) will be less than or equal to f (3). And therefore f (3 ˄ 4) is not

equal to f (3) ˄ f( 4), Ok. Either it is f (4) or it is f( 3). 



So f (1) is not equal to  f (3) or f (1) is not equal to f (4) and therefore ˄, it is not meet

homeomorphism. So (L, | )  with divisibility relation and (L ,≤)    with less than or equal to,

they are not isomorphic to each other. With that I would like to end this lecture. Thank you

very much for your attention.


