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Partially Ordered Set III

Hello friends, welcome to my lecture on Partial Ordered Sets, this third lecture on Partial

Ordered Sets that is posets. Let us first define what do we mean a maximal element in a

poset. An element a in a set S which is a poset is said to be maximal if no other element

succeeds a. That is if a precedes x then it must imply that a is equal to x. A maximal element

in a poset need not be unique. So this is a very important point. A maximal element in a poset

need not be unique.  There could more than one maximal element. And there may not be any

maximal element. 

(Refer Slide Time: 01:12)

All  those  elements  which  appear  at  the  highest  levels  of  Hasse  diagram  of  a  poset  are

maximal  elements.  So from the Hasse diagram we can easily  see what  are  the maximal

elements. 
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Now let us see for example we have this set. X ={ 2, 3, 6, 12, 24, 36} and let it be a poset

with divisibility relation. Then we have to show that 24 and 36 are maximal element. So we

will draw its Hasse diagram. And then from the Hasse diagram we shall be able to see the

maximal elements. So let us draw the Hasse diagram. So this is 2. Then we have, now since it

is a divisibility relation, 2 does not divide 3 or 3 does not divide 2, Ok. 

2 divides 6, Ok so we have 2 divides 6, Ok. Then 6 divides 12, Ok. 6 divides 12. So we have

12 here. 12 divides 24, Ok so we have 24 here. And then we have 3, then we have 3 Ok, 3

divides 6 so we have 3 divides 6, Ok. 6 divides 12 and then 12 divides 24, 12 divides 36 Ok.

12 divides 36, Ok.So we can see this Hasse diagram, 2 divides 6, Ok. 6 divides 12. 12 divides

24, Ok. 3, 3 divides 6, Ok. 6 divides 12, 12 divides 36, Ok. Now we can see here 24 and 36,

they  are  the  maximal  elements.  Why they  are  the  maximal  elements?  Let  us  go  to  the

definition again of the maximal elements. 
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An element is called maximal if no other element succeeds a, that is a ⪯ x implies a= x. 

(Refer Slide Time: 03:22)

So you can see that there is no element that precedes 24 and 36 here.  So 24 and 36 are

maximal elements of the poset X. A poset may not have maximal element. For example let us

consider the set of integers, Z. Ok let us consider the set of integers with the usual ≤  relation,

Ok. Then no element is a maximal element, Ok. You take any element. We can always find

element which is greater than that. So there is no element which is a maximal element. 
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Now let  us  go to  minimal  elements.  Analogously  an element  b in  a  poset  S is  called  a

minimal element if no other element precedes b. That is, if y precedes b then y must be equal

to b. A minimal element again need not be unique. There could be more than one minimal

element and there may not be any minimal element. All those elements which appear at the

lowest levels, Ok at the lowest levels of the Hasse diagram of a particular partially ordered

set are minimal elements. So it is easier to locate the minimal elements of a poset if we draw

the Hasse diagram. The elements that occur at the lowest levels will be the minimal elements.
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Now a poset  may have more than one minimal  element.  Let  us  say for  example,  let  us

consider this poset. {2, 3, 6, 12, 24, 36} Ok with divisibility relation. Then 2 again we can

see, 2 divides 6, Ok, 6 divides 12, 12 divides 24, Ok and then 3, 3 divides 6, 3 divides 6, 6

divides 12 and 12 divides 36, Ok So here you can see 2 and 3 occur at the lowest levels of

this Hasse diagram. Therefore 2 and 3 are minimal elements here. A poset may not have a

minimal element. You see here, a poset may not have a minimal element. 

For example if you consider the set of integers again, set of integers Z, Ok with the usual

relation ≤ . Then we know that it is a poset. Because you take any two integers, Ok, any

integer then a belongs to Z, this ≤  is a reflexive property because a ≤ a. And if you take (a, b)

belong to Z then a ≤ b, b ≤ a and b ≤ a implies a = b, Ok. 

If you take a, b, c belonging to Z, Ok then a ≤  b and b ≤  c implies that a is ≤  c. So the set of

integers with this relation ≤  is a poset, Ok. And clearly it has no minimal element. Because

you take any element we can always have an element which is, which precedes that element,

Ok. So this has no minimal element. So the set of integers with the usual relation does not

have a minimal or a maximal element. 

Now  every  non-empty  finite  poset  has  at  least  one  minimal  element  and  one  maximal

element. So let us show that, every non-empty finite set has at least one maximal element and

then, similar proof we can give for minimal elements. So let us say, let S be a finite non-

empty poset, Ok with the order relation, partial order relation, this precedes, Ok.
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So since S is  a  non-empty set  it  must  have an element,  say  x0.  So if  x0 is  the maximal

element, if x0 is the maximal element then we are done.If x0 is not the maximal element then

there exists  x1 belonging to S such that  x0 precedes  x1 and  x0 ≠  x1 , Ok. If  x0  is not the

maximal element,  then there will  always exist  an element  x1 belonging to S such that  x0

precedes x1 and x0 ≠ x1. 

If x1 is the maximal element then again we are done. If x1 is not the maximal element  then

there will exist x2 belonging to S such that x2, x1  precedes x2, Okx1 precedes x2and x2≠ x0,

Ok. So we can go on iterating this process, if x2 is not a maximal element then we will get an

element x3 such that x2  precedes x3  and x2  ≠  x3. So in this manner we get a sequence, Ok,

iterating this process we obtain a sequence x0 precedes x1 , x0 , x1 , x2, x3 and so on. 

We get a sequence in S, Ok which satisfies this order relation, x0 precedes x1, x1  precedes x2

 , x2 precedes x3 and so on Ok. Since S is a finite set, Ok when you get  the sequence x0 , x1,

x2 this infinite sequence then there are two possibilities. At some state we get the maximal

element, Ok. We get the maximal element, we get a maximal element in S, say some, Ok. We

stop. 

If we do not have a maximal element then because that, because of the fact that S is a finite 

set what will happen that for i, for some i less than j, xi will be equal to x j . xi will be equal to

x j. Now xi precedes, xi+1 precedes xi+2 and so on, x j−1, Ok so xi precedes x j−1 Ok and what 



we have here, xi equal to x j, Ok x j−1  precedes x j  Ok. Further x j−1  precedes x j  and x j  is 

equal to  xi , Ok.  x j  is equal to xi , Ok.  x j  is equal to xi so by transitivity, see xi precedes

xi+1 . xi+1 precedes xi+2, and so on. x j−1 , so by transitivity, by transitivity xi precedes x j−1 . 

Now xi precedes x j−1 and xi precedes x j−1 , further x j−1 precedes x j  and x j  is equal to xi .So

we have  x j−1 precedes  xi .  Thus, thus  xi precedes  x j−1 and  x j−1 precedes  xi ,  Ok. So by

antisymmetry, xi equal to x j−1. But x j−1 precedes x j, Ok. x j−1 precedes x j , Ok x j−1  strictly

precedes x j . x j−1 is not equal to x j , Ok, x j−1 is not equal to x j   and x j−1 precedes x j  and so

x j−1 precedes x j and x j  is equal to...so, so x i, x i is equal to x j−1, x j−1 precedes x j , Ok x j−1

strictly precedes x j. So this means xi strictly precedes xi , Ok.

So thus xi strictly precedes xi, Ok which is impossible.  Because xi strictly precedes xi means

xi is not equal to xi  and xi precedes xi . So here what we do? xi precedes x j−1, x j−1   precedes

xi Ok, therefore by antisymmetry xi is equal to x j−1 but x j−1 strictly precedes x j. And x j  is

equal to xi . So xi precedes, strictly precedes xi . So that is impossible So the finite set S must

have a maximal element. And similarly we can show for minimal element, the existence of a

minimal, minimal element. 
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Now let us go to the, this example.  
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Let S be equal to {2, 4, 6, 12, 20} and S be a poset by the order relation divisibility then let us

find the maximal and minimal elements of S. So let us draw the Hasse diagram. 2, 4, Ok then

we have 6, 2, 4 then 4 divides 12 so we have 12 here, Ok and then we, 12 does not divide 20,

Ok. Now what have, 2 divides 6, Ok. So we have 6 here, 2 divides 6, 6 divides 12, Ok, 6

divides 12 and 4 divides 20, Ok, 4 divides 20. So now in this Hasse diagram what do we

notice? There are two maximal elements. Maximal elements are 12 and 20. They are at the

highest levels of the Hasse diagram. Maximal elements are 12, 20. And minimal element,

minimal  element  is  the  one  which  occurs  at  the  lowest  level  of  the  Hasse  diagram.  So

minimal element is 2, Ok. 
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Now let us go to this example, let T be equal to {2, 3, 4, 16}. Let it be ordered with the

divisibility. Then again let us find the maximal, minimal elements of T. Then let us draw the

Hasse diagram for this. So 2 divides 4, Ok, 4 divides 16, Ok and we have 3. Ok, 3 and 2 are

not  comparable  because 2 does not  precede  3,  3  does  not  precede  2 Ok and 3 does  not

precede 4, 3 and 4 are also non-comparable. 3 and 16 are also non-comparable. So here the

maximal elements are 3 and 16, Ok. The minimal elements are 2 and 3. 

(Refer Slide Time: 17:07)

Now suppose F ={a, b, c, d, e}. Ok F={ a, b, c, d, e} be ordered as in this figure, Ok. Find all

the subsets of F in which the element c is a minimal element.So subsets of F in which the

element c will be the minimal value element means we should consider all those sets, Ok

subsets of F which contain c but do not contain a, Ok. So the minimal, so the subsets of F are,

the subsets of F in which c is minimal element, they are singleton set c, Ok, singleton set c,

then we can write c, Ok we should see that the set contains c but it does not contain a,

because a occurs at the lowest level of the Hasse diagram. 

So {c}, {c e}, we can write {c d}, {c b}, then we have {d c e}, then {b d c} and then {b d c

e], Ok. So all those subsets contain c, but do not contain a. Now singleton set {c} we have

taken, {c e} we have taken, {c d}, {c d} we have taken, {b c} we have taken and then we

have {d c e}, {d c e} and then we have {b d c}, and then we have {b d c e}, we also have {b c

e}. Ok so there are 8 sets, subsets of F in which c is the minimal element, Ok.
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Now lets us go the case, least elements. Let P be a poset with this order relation precedes. If

there exists an element a in P such that a precedes x for all x belonging to P then a is called a

least element in P. The least element is also called first element or zero element of P. Now if

the least element exists then we can easily prove that it is the unique element. It may happen

that the least element does not exist, Ok.

So if the least element exists it will always be unique. So let us prove this fact. So let us say,

let there be two elements, a and b in P which are least elements of P. We shall show that they

have to be equal. Then by definition a strictly, a precedes x, Ok for all x belonging to P. And

b precedes, say x for all x belonging to P, Ok. Now since a precedes x for all x belonging to P

and b is an element of P. So a precedes x for all x belonging to P implies that a precedes b,

Ok. Further b precedes x for all x belonging to P implies that b precedes a, because a is also

an element of P.Now a precedes b and b precedes a, Ok. Let us use antisymmetry. So then if

a precedes b and b precedes a we have a equal to b, Ok, by antisymmetry. So if at all the least

element exists it will be unique. 
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Now greatest element, let P be a poset. If there exists an element a belonging to P such that x

precedes a for all x belonging to P then a is called the greatest element in P. The greatest

element is also called the last element or unit element of P. If it exists, it is unique. Like, it

can be easily shown that the greatest element has to be unique if it exists. We can give this

argument similar to the case of the argument given in the case of least element. So it may

happen that the greatest element does not exist. 

(Refer Slide Time: 23:02)

Now let us look at some examples. Suppose S ={a, b, c}, Ok. We consider the power set of S

with the ⊂ relation, Ok. Power set of S with the ⊂  relation is a partially ordered set. That is, it



is a poset. We know this. Ok now consider this subset of P (S)={   Φ, {b},{c},{ a c}}. The set

A consisting of  Φ, singleton set b, singleton set b, singleton set c and then the set a c, Ok is

clearly a subset of P S. 

Then, then  Φ, Ok  Φ,  Φ is contained in every set.  Φ is contained in every set belonging to

the set A.  Φ is contained in  Φ,  Φ is contained in b,  Φ is contained in c,  Φ is contained in a

c, Ok.So  Φ is contained in every set in the set A. So  Φ is the least element by the definition

of the least element. And it has no greatest element. Why? Because no, there is no element in

A which includes every other element of A, Ok. That means all the elements, all the elements

of A are subset of that element. No such element is there. 

If you take this {a c}, then this{ a c} element contains c. It contains  Φ but it does not contain

b, Ok. So this has no greatest element. Now if you take the set B to be this, { Φ,{a}, {b}, {a

b}}, Ok. Then again  Φ is the least element of b, Ok and {a, b}, you can see {a, b} is the

greatest element because {a, b}, I mean every subset here, every element of B is a subset of

{a, b}, Ok.  Φ is a subset of {a, b}, singleton set {a} is a subset of {a, b}, singleton set b is a

subset of {a, b}, singleton set, this set {a b} is itself  a subset of {a b}. So this {a, b} is the

greatest element.
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Now let us define supremum and infimum. Let A be any subset of a poset S. An element M

in S is called an upper bound of A if M succeeds every element of A, Ok. That is M is an

upper bound of A if for every x belonging to A we have x precedes M. If an upper bound of



A precedes every other upper bound of A then it is called the least upper bound, least upper

bound or supremum of A and we denote by sup A. 

An element m in S is called a lower bound of A if m precedes every element of A, that is m is

a lower bound of A if, for every x belonging to A we have m precedes x. If a lower bound of

A succeeds every other lower bound of A, Ok then we call it the greatest lower bound or

infimum of A and we denote it by inf A. 

(Refer Slide Time: 26:17)

Now look at this figure, Ok this Hasse diagram. So let V={ a, b, c, d, e, f, g}. Ok. Let it be

ordered as shown in this figure, Ok. X = {c d e}. We have to find upper and lower bounds of

X, Ok So upper bound, let us again go to the definition of upper bound. Upper bound, an

element M in S, Ok an element M in S will be called an upper bound of A if M succeeds

every element of A. So let us see which element of V succeeds every other element of X, Ok. 

So we have here, c you can see, {c d e}, Ok this is {c, d, e} Ok. So now you can see f, e and

g. Ok. f,  e and g are the elements in V which succeed every other element  of X, Ok. e

succeeds c, e succeeds e, e succeeds c, e succeeds d, Ok and f, f succeeds e. f succeeds c, f

succeeds d. Similarly g succeeds e and g succeeds c and g succeeds d. Ok. So upper bounds

here are e, f, g. Now let us look at lower bounds. So lower bounds are those elements of V,

Ok which, which precede every other element of X. Ok so let us see. We have c, d, e here.

This is c Ok, this is d, this is e, Ok. Now which elements of V precede c, d, e? There could be

two elements, a and b Ok. Now a precedes c, a precedes e, a precedes d, Ok so a is clearly

there. a is a lower bound, Ok Now b is not a lower bound of this set X because b does not



precede c, Ok. b and c are not comparable, Ok. So since b does not precede c, Ok we have a

lower bound as only a. 
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Let us take another problem. Let W = {a, b, c, d, e, f}. Let it be ordered as shown in this

figure and Y be equal to {b, c, d}. We have to find the upper and lower bounds of Y. Ok so

now upper bound of Y means every, I mean an element of W which succeeds every element

of Y={b, c, d} Ok. So the elements e and f, the elements e and f succeed the elements c, d

and b. Ok so upper bounds are e and f. And lower bounds are clearly a and b. Because a and b

precede every element of the set Y. So lower bounds are a and b 
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Now let us define similarity mapping. Let two ordered sets are called similar if there exists a

one-to-one  correspondence  between  the  elements  of  each  set  which  preserves  the  order

relation, that is a precedes a’, a a’ belongs to A, a precedes a’ if and only if f a precedes f a’.

So an ordered set A is similar to an ordered set B, we denote it by this  notation, this one, Ok,

so denoted by A, this is actually called isomorphism, isomorphic relation A and B are then

isomorphic. 

So two ordered sets A and B are called isomorphic if we can find an isomorphism, Ok this is

isomorhpism, one-to-one, onto mapping from A to B which has the property that for any two

elements a and a’ in A, a precedes a’ if and only if f a precedes f (a’). So the order relation is

preserved here. Such a function is called similarity mapping from A to B. 
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Now let V={1, 2, 6, 8, 12}. This be ordered by divisibility and W={ a, b, c, d, e}. Draw the

diagram for W if the following is the similarity mapping from V into W, Ok. So let us see.

This is ordered by divisibility, Ok. So 1, 1 divides 2, 2 divides 6, Ok, 2 divides 6, 2 divides 8

Ok and 6 divides 12, 6 divides 12 Ok. So 1 divides 2, 2 divides 6, 6 divides 12 and 2 divides

8 Ok. Now what we have here 1, under the mapping f, 1 goes to e, so we have e here, Ok and

then 2 goes to d, so we have d Ok and then 6 goes to b, so we have b here. And then 8 goes to

c, so we have c here, and then 12 goes to a, so we have a here, Ok. So draw the diagram for

W, Ok. So this is the diagram for W, Hasse diagram for W, Ok using the similarity mapping.
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Now, let X be {3, 9, 18, 27};  X ={3, 9, 18, 27}. Y = {a, b, c, d}. Let they be ordered as

shown in this figure, Ok, as shown in this figure. Then identify all the possible similarity

mappings of X onto Y. So one similarity mapping could be f, (3 a), (9 b), then (27 c) and (18

d), Ok. Other similarity mapping could be written as say, g, (3 a), (9 b) and then we can say

(27 d), and (18 c). So there are two possible similarity mappings in this case. That is the end

of my lecture. Thank you very much for your attention. 


