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Lecture - 57
Solution of Non-Homogenous Wave Equation

Hello friends, welcome to this lecture. So in this lecture we will discuss a very important

method, method of characteristics to solve a non-homogenous problem or we can say that

Riemann Green’s Method to solve a non-homogenous problem. 
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In this regard if you recall  in the very first lecture of wave equation we have solved one

dimension wave equation that is you can say that this problem i.e., u tt = c square 2 u xx, here

x is lying between –infinity to infinity, t greater than or equal to 0, with the initial condition

that  the  u(x,  0)  =  f(x)  and  u  t(x,0)  =  g(x).  And  here  we  have  solved  this  problem by

considering that since it is a hyperbolic equation so here we have characteristic exist Xi =

Xi(x – c*t). 

Here you can write it as Xi = x – c*t and Eta = x + lambda * t. And with the help of this we

have reduced this  problem as u Xi Eta = 0 and then we saw after solving this  we have

obtained our solution say u (x , t) = ½*[ f(x + c*t) + f(x – c*t)] + 1/(2*c) integral (x – c*t) to

(x+ c*t)[g( Xi) * d(Xi)]. Here we have used method of --- to solve this one dimensional

infinite string problem. 



Now in this lecture we will again discuss the method of characteristics to solve the non-

homogenous one dimensional wave equation. So now let us concentrate on this now. So here

this method is popularly known as Riemann’s Method or Riemann Green’s Method. We will

see what is this. 
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So here consider the following linear, second order hyperbolic equation i.e., L (u) = f(x, y)

where L (u) is defined as u xy + a(x, y)*u y + c(x, y)*u = f(x, y) where a, b, c and f are

continuously differentiable functions. So these a, b, c and f are continuously differentiable

functions with respect to the variables x and y. 

And since  we assume this  form as  a  canonical  form because  if  you remember  that  any

hyperbolic equation second order, linear hyperbolic equation can be reduced to this problem,

this  canonical  form,  i.e.  L(u)  = f(x,  y).  So we are assuming that  here x and y are  your

characteristics. So here I am assuming that since this equation is already in its canonical form

so its characteristics are x= constant and y=constant. So here x and y are your characteristics

coordinates.

So now we try to solve this L (u) =f using Riemann’s method. So for that here we assume

v(x) be another function having continuous partial order partial derivatives. Now let us look

at the following identities. So first thing is v*u(x, y) – u*v(x, y), this I can write as (v* u x) y

- (u* v y) x. If you look at how these 2 are equal, if you simplify this it is what v y * u x + v*

u xy – u x * v y – u* v xy. 



If you cancel this v y * u x here, then what you will get v* u xy – u* v xy. That is what we

have written here. So being said these are the identities we are using a *v * u x = (a*v*u) x –

u*(a*v) x. Or you can say that here I am writing a *v * u x + u*(a*v) x= (a*v*u) x , that you

can simplify this. If you are simplifying this it is what it is ( a*v)*u x + (a*v)x *u so which is

already written here.

So we are writing a *v* ux as a*v*u) x – u of partial derivative with respect to x of a*v.

Similarly, in the same way we can write (b*u*v) y as (b* v) y * u + b*v*u y. So here I can

write b*v*u y as (b*u*v) y - (b* v)y * u, so (b*v*u)y – u * (b* v)y . So here we are using

these identities. So idea is that if we can write v* L[u] – u*M[v] = u x + v y. We just arrange

it. 
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Now here what is M what is v let us see. Then I can write it M[v] as v xy – (a*v) x - ( b*v) y

+ c*v. And here U= (a*u*v) – u * v y and V as (b*u*v) + v*u x. And here M is some operator

defined in terms of v and we say that this is a operator which is known as the adjoint operator

of L. So here let us again see how it is done.
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So here what we have done, here L u = f and here L (u) is defined as following u xy + a* u x

+ b* u y + c*u. So here we define your M v as v xy – (a*v) x – (b*v) y + c*v. So we need to

find out v*L u – u* M v. So this we want to find out. So what is this, here we can write v*u

xy + a*v*u x + b *v*u y + c*u*v – u*v xy + u*(a*v) x + u*(b*v) y – c*u*v. So this will be

cancelled out.

So this term here v* u xy – u *v xy which we have approximated like this (v* u x) y – (u*v

y)x. So this term minus this term we have approximated like this. So this how we write it

here, so this a*v*u x, let me look at here. Here we have written a*v*u x as = (a*v*u) x –

u*(a*v) x. So let me write here, say a* v* u x + u*(a*v) x. This we can write (a*u*v) x. And

that we can see it here.

And then we can write b*v*u y + u*(b*v) y, and this we can write it as (b*u*v) y. So it

means that all this thing I can write it like this, this I can write it (v*u x) y – (u*v y)x +

(a*u*v) x + (b*u*v)y. So now let us collect the proof. So here a *u*v –u*v y) that will be

with respect to x + (v*u x + b*u*v) y. So call this quantity as u and this quantity as v. So look

at here u is a*u *v – u*v y, so a*u *v – u*v y and V as b*u*v + v*u x. 

We have written that how that if you take L u as this, M v as this then you can write the v* L

u – u* M v as u x + v y here. So this is some identity which is known as Lagrange Identity. It

is similar to your ordinate differential equation. 
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In ordinary differential  equation we have written the similar  kind of identity  and these 2

identities are known as Lagrange’s Identity and the operator M which we have defined here is

known as adjoint operator. And in a similar way as we have defined for ordinate differential

equation that if M = L then L is called as self-adjoint operator. So here if you look at what is

the difference between L and M, in L u you have written as u xy + a*u x + b* u y + c*u. 

So here if you look at u xy = v xy and a*ux is now written as –(a*v) y and (b*u*y) is –(b*v)

y  derivative  +  this  term is  no  change,  so  it  means  there  is  a  sign  change in  first  order

derivatives and no other change. So this is only for second order, if it is higher order then first

third and all odd terms will have this kind of change and even order will not have any kind of

change. So here we simply say that if M= L then the operator L is said to be self-adjoint. 

Now we recall a very important theorem which is Green’s theorem, and we will see how this

Green’s theorem is very useful in solving our problem. So what is Green’s theorem, let C be a

closed curve bounding the region of the integration D and U and V be differentiable functions

in D and continuous on C.

So let us say that C is what, C is some kind of you can say domain, so C is this and D is

domain closed by this curve C. And u and v are differentiable functions inside your domain

here. So u and v are some functions which is differentiable on this and on boundary it is

continuous. So how this double integration which is done inside your region is now turned to

the integration on the boundary. 



So here your area integration is now reduced to line integration. So this is the power of the

Greens theorem and here you can write  u x + v y dx*dy taken on the region D is  now

converted into line integral U dy – V dx and this is the orientation that it is clockwise here. So

then (u x + v y) dx*dy integration over the domain D is now line integral U dy – V dx over

the contour C and this having the direction anticlockwise. So it is like this. So now let us see

how this Green’s theorem is utilized to find out the solution of non – homogenous wave

equation.
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So here let us start with let gamma be a smooth initial curve and since characteristics are x =

constant and y = constant so we assume that the tangent to gamma is nowhere parallel to x or

y axes. So we consider this, this is your x and this your y and suppose your gamma is given

like this. And so here it is your gamma and so here we are assuming the initial (()) (13:57)

that if you take the tangent at any point of gamma, tangent is parallel to x axis and y axis.

So now we want to find out the solution. We suppose that u, u x and u y, in fact u and normals

of u are prescribed on gamma. And we want to find out the solution in the neighborhood of

this gamma. So let us say that we have a point P whose coordinates are alpha, beta and here

we want to find out the solution if the non-homogenous problem. So this initial problem is

known as Cauchy problem. 

Here we want to find out the solution of this initial curve problem. So let us say you find out

the characteristics parallel to your axes. So here we say that this is P and let us say this Q and

this is R. So it means that the characteristics drawn from P will cut the initial curve in 2



points i.e., P, Q and R. So now we want to find out the solution at this particular point. So let

us say that D be the region bounded by the closed contour PQRP, it is PQRP, so it is the

contour, and now D is the region bounded by this.
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So here by applying Green’s theorem to this region we get, so here we already know that

v*Lu –u*Mv by Lagrange identity we can write that v * Lu – u*Mv, this is nothing but your

U*dy – V*dx. Let me write it here, this is what it is double D and it is (u x + v y)*dx*dy. So

this is where we have utilized the following thing, here we have utilized this property that

here v*L[u] – u*M[v] = u x + v y. So here we have written u x + v y. 

Now we apply Greens theorem and we can write this as integration U*dy – V*dx. So here

again let me write it here, this is your P, this is Q, this is R, so here we have D, integration on

the region D is now thrown away to its boundaries, so it is integration C (U dy- V dx). Now

this boundary can be truncated into this term. This is QR. So (U*dy – V*dx) on Q, R + R, P

here its U dy – V dx, plus it is on PQ.

In this line RP, your x is fixed. So x is here alpha and here it is y = beta. So x is fixed, it

means that if you take the dx then it is 0. So on RP your dx component is gone. So here we

have only U dy. On RP we have only term U dy and similarly on PQ your y = beta, so it

means that dy = 0. So we have only one term left i.e., - P, Q (V dx). So here integration v* Lu

– u*Mv*dx*dy which is given as double integration U x + V y*dx*dy. 



Then using Greens theorem, we write line integral U*dy – V*dx and then we truncate using

this equation for C we have written as along QR + RP + PQ. So along QR we have this, along

RP dx  component  is  missing  because  dx=0  and  along  PQ we have  only  dx  component

because dy =0. So now this equation is now written as sum of 3 integrations, from Q to R

(U*dy – V*dx) + R to P (U*dy) – P to Q (V*dy).
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Now since we know that the equation of u and u x or u y only along the initial curve but in

the last term of the above equation we have term u x along the characteristic x = alpha. 

(Refer Slide Time: 18:24) 

If you look at here, in here what is the equation for V, V equation is given as this V = b* u*v

+ v*u x. So here b*u*v +v * u x. So here this u x we want to know on these characteristics

which we don’t know because we don’t know what is the value of U x along this PQ. So what



we try to do, we just simplify this expression so that we need only the function u and its

normal only on the characteristics means only on the initial curve not on characteristics. So

here we simplify this P to Q V dx in the following way. 
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So let us say P to Q V dx = b*u*v dx + v”* u x dx. So we can write it here [u*v] P to Q, we

try to do solving this problem, the integration by part so that this (()) (19:26) is shifted on this

v because so far we do not know what is v. We have just taken v as some twice differentiable

continuous function, that is all. 

Let us shift our derivative on v. So here we can write it this as v * integration of u over PQ +

P to Q and differentiation on v so v x * u and this term is already there, so uv, so we can write

this as integration P to Q V dx as [u*v] P to Q + P to Q (u*(b*v –v x) dx). So here now

derivative is not on u, it is on x. So using this relation (77) now look at again this (76) here it

is [u*v] from P = [u*v] Q, this I can write it here as [u*v] at Q – [u*v] at P + this term. 

So now take that side. So we have [ uv] P = [uv]Q + P to Q(u( b*v –v x)dx) + P to R(u( a*v –

v y)dy). 
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Here we are not changing anything. So what we try to do, from this you just take out the

value here, so you have P to Q V*dx equal to this whole thing. So here we have double,

minus Q to R U *dy –V*dx – R to P U*dy. So that is what we are writing here. So it is [u*v]

P = [ u*v] Q + P to Q (u*(b*v –v x)) that is the term which we have obtained from 77 and

then  P to R( u*( a*v – v y)dy), we adjust writing – Q to R( U*dy – V*dx) that is on the

initial curve plus double integration.
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Now so far the function v(x) be an arbitrary function having continuous second order partial

derivative. We don’t have any information on V. So let us if possible now choose function

v(x, y; alpha, beta) to be the solution of the adjoint equation M[v] =0. Now we are putting

condition on M[v] so that our problem is reduced to a simpler problem by which we can find

the solution for the given point P. 



So let us say that v x = bv   y=beta. So on Y= beta, we want that v y must be equal to a v

along PR. So what is PR is this. So along x = alpha we want  u y must be equal to av and

similarly along PQ we want that your v x must be equal to by and x = alpha we want v y = av.

And also that this Mv is 0, so it means that v is the solution of adjoint equation. 

So let’s write it here v y = av on x=alpha and v=1 at x= alpha and y = beta. So it means that at

point P, at this point we want that v has to be 1 and if we do this then our solution is reduced

to [uv] p = [uv]q this term is gone, this term is also gone, what we have is very simpler value

[uv]Q – Q to R(U*dy –V*dx) + double integration v*Lu dx*dy. Now this will give you the

solution of U at the point P. 

So such a function which satisfy all these conditions that it is a solution of adjoint equation

and  satisfy  these  initial  values  along  the  characteristics  v  = beta  and x  =  alpha  is  your

characteristic lines. And such a function v(x, y; alpha, beta) is called a Riemann function or

Riemann’s Green function. And we already know that the Riemann function is the solution of

a hyperbolic equation where the data is prescribed on both the characteristics passing through

the point P(alpha, beta). 

So this is one characteristics, this is another characteristics. So your data is defined on these

characteristics.  So  we  can  say  that  here  the  solution  if  data  is  prescribed  along  the

characteristics we will get a unique solution. So such a v is going to be a unique solution. 
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So now once we have this v and the thing that Lu = f then we can write on our equation, last

equation in the following form that [u] at P = [ u*v] at Q – Q to R[ u*v(a*d*y-b*d*x)] + Q to

R[u*v y*dy + v* u x* dx] + double integration v*f*dx*dy, f is known , v is known and uv is

known and u and u x is known too on the initial curve. So by (78) you can find out the

solution u at point P using this formula. But here we have used only the condition u and u x

on your initial data. 
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Now it may happen that on initial curve you know only u and u y rather than u and u x. So if

you know u and u y only we cannot use the equation (78) to find out the solution at P. Here

we use one small identity i.e., [u*v] R – [u*v] Q = Q to R [((u*v) x) * dx + ((u*v) y)* dy]. In

fact it is what, it is simply along QR d [uv]. So this we can write it [u*v] R – [u*v] Q. So

using this if you simplify here you can use the value of [u*v] Q from this. 

You can find out the value of [u*v] Q, put it back and you can have this formula. I am not

going to simplify this. You can simplify, take out the value of [u*v]Q in terms of [u*v]R and

this integral and when you put it back it will give you the following thing [u]P =[u*v] R – Q

to R (u*v x dx +v*u y dy) this is unchanged, the only thing we have changed here, this

expression and this thing. This will be changed a bit, rest everything is the same. 

So [u] P = [u*v] R – Q to R (u*v x dx +v*u y dy) – Q to R (u*v)*(a*dy – b*dx) + double

integration v*f*dx*dy. So this is the equation (79) will give you the solution of u at P when u

and u y is prescribed on initial data i.e.  the initial curve is this. So here u and u y is used. But



what happen if u, u x and u y are given along the initial curve. So I cannot use (78), I cannot

use (79) alone. 
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So what we do, we sum this (78) and (79) and have the following thing that if both u x and u

y are prescribed along the curve gamma, then we can find the solution by adding the previous

2 formula and we have the following expression that [u]P = ½ *([u*v] Q + u*v] R) - Q to R

(u*v)*(a*dy – b*dx) – ½* Q to R u*(v x *dx – v y * dy) + 1/2 * Q to R v*(u x * dx – u y*

dy) + double integration v* f* dx* dy. The solution at the point P(alpha, beta) depends only

on the Cauchy data along the arc QR. 

So here we have utilised what, we have utilised only the value u and u x and u y on the initial

data. So by the equation number (80) you can find out the solution P if initial data is u, u x, u

y defined on the initial data. If only u and u y is defined then you can use equation number

(79), if u and u x is given only then you can use equation number (78). So we have now 3

formulas to give you the solution of your problem where the initial data is given along the

initial curve.
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So now let us consider one simple example based on this so that we can understand what we

have just explained. So now, the example is this, prove that for the equation Lu = u xy + ¼ *u

= 0, the Riemann’s function that is v is J0*(square root of (x – alpha) *(x – beta)). Here J0 is

the 0th order Bessel function of the first  kind.  Here the problem is  only to find out your

Riemann’s function, it’s not the problem of solving the entire problem.

 So  here  we  have  initial  function  homogenous  equation  and  we  want  to  find  out  the

Riemann’s Green function. So here if you have Lu = 0, then look at the adjoint problem and

since we don’t have any first order partial derivative the corresponding adjoint function is the

same. In fact, it is a self-adjoint problem. Here M[v] = v xy + ¼*v = 0. 
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Now we have the initial  condition along with this. So here we don’t have the first  order

derivatives means a= 0 b=0 so here we can say that v x =0 which we have assumed in terms

of a and b, so v x=0 on y=beta and v y =0 on x=alpha. And v=1 at x=alpha and y=beta. So we

simply assume that v x = something * (y – beta) and this v y = something * (x – alpha). 

Here we try to see that, let us use that if v is some function of y- beta and x-alpha, then we

can achieve this. So let us say that let Eta = (x-alpha)*(y-beta) and let us assume that v = z

(Eta). So when you do this, then v x is what, v x = z Eta(y –beta), so it will be 0 at y=beta. v

y= z Eta(x- alpha), so it will be 0 at x = alpha. So let us say that using Eta as (x –alpha) * (y-

beta) let us assume that v is some z (Eta). 

Now we want to find out the z (Eta).So to find out z (Eta), we have conditions. So we can say

that, condition is what, that we add 1. Add x= alpha and y= beta. So it means that z (0) =1,

that is first condition we have. And what equation it will satisfy we have to find out. So let us

find out v xy. So v xy is what z EtaEta *(x-alpha)*(y-beta) + z Eta. 

So that you can find out, so here we differentiate with respect to y, so v xy = z EtaEta (y –

beta), then if you differentiate again you will get what, we differentiate, sorry z EtaEta (y –

beta) and you will get (x-alpha) also + when you differentiate y-beta with respect to y you

will have z Eta only. So here z Eta Eta(y – beta)* Eta y. Eta y is x-alpha.and + z Eta. So v xy

is this. So here v xy + ¼*v =0. So this is the equation which we have to satisfy. 

So here we have xy is what z EtaEta. This is what, this is nothing but Eta we have assumed,

so Eta * z EtaEta + z Eta + ¼*z = 0 and z(0) = 1.This is the initial condition which we know,

that z Eta which is nothing but your Riemann’s Green function must satisfy this ordinary

differential equation along with the conditions that z(0) = 1.
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So we want to show that this is nothing but J0 *(square root of Eta). So our claim is that this

solution of this problem is your J0 of root Eta. So we can show, so here we want to show that

the solution is actually your z0 of u Eta.
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So for that let us show here that if we have x square 2 say z xx + let me use this notation, x

square 2 * y” + x*y’ + x square 2*y=0 and we already know that solution of this is J0(x). So

solution is J0(x). Now we want to show that what is J0 (root x) will satisfy because we claim

that the last problem, this problem has solution J0 (root of Eta). So we simply say that, let us

say that you take x as root t and try to see that this will be converted into previous problem. 

So here you can find out dx/dt as 1/ root (t)*2. And we can write it here dy/dx as what, dy/dx

= dy/dt * dt/dx. So dt/dx is 2* root (t), so 2* root (t)* dy/dt you will get. Similarly, you want



to find out d square 2y/ d x square2, so it what d/dx of (dy/dx) and this is what d/dt of (dy/dx)

and dt/dx. So this is what d/dt (2* root (t) * dy/dt) and it is 2* root (t). 

So here if you differentiate this you will get first thing (2 and it is root(t) if you differentiate it

is 2* root(t), dy/dt + 2* root(t) * d sqaure2 y/dt square 2) into 2*root(t). So you can write it

here d square 2 *y/dx square 2, when you multiply here you will get 2 * dy/dt + 4*t * d

square 2*y/ dt square 2, that you will get. So this is d square 2*y/ dx square 2. And dy/dx is,

it is what, dy/dx is we have already 2*root (t) * dy/dt. 

So let us use these values. Since x square 2 is what, x square 2 is t only so t[ 2* dy/dt + 4*t* d

square 2*y/dt square 2] + x, x is our root(t) and dy/dx is 2* root(t)*dy/dt + x square2 is again

t, so y=0. So if you simplify what you will get it is 4* t square 2 * d square 2 *y/dt square 2 +

collect the coefficient of dy/dt, it is 2t here and if you look at here it is again 2*t, so it is 4*t +

ty =0. Now divide by 4*t. 

So if you divide by 4*t, it is t* d square 2 *y/dt square 2 + dy/dt + ¼ *y=0.So here when you

divide by 4*t we have the following equation t* d square 2 *y/dt square 2 + dy/dt + ¼ *y=0

and if you look at it is what, it is a transformation of the earlier equation whose solution is

J0(x). So it means that here the solution will be J0(x but here what is x, we have assumed that

x is root (t). So solution of this problem is J0 (root (t)). 

So solution of this equation t* d square 2 *y/dt square 2 + dy/dt + ¼ *y=0 is your J0(root(t))

and that is what we claim here, that the solution of Eta * z EtaEta + z Eta + ¼*z = 0 is

J0( root(Eta)) and it satisfies the initial condition that z(0) = 1.So here we said that the z(Eta)

is coming out to be J0( root(Eta)) and what is z here, z is a Riemann Green’s Function for the

problem here. 

So what we have proved here corresponding to the equation Lu = 0 where Lu is defined as u

xy + ¼*u = 0, the corresponding Riemann Green function is J0 (root(Eta). So now what is

Eta here, J0 (root of ((x-alpha)*(x-beta)). So here we have obtained the Green’s function of

this. So once we know the Green function and if the problem Lu = f is given you can solve

the problem Lu = f in terms of v here. So with this I stop our discussion. 



Next class we will discuss our some more problems based on heat equation. So with this I

end our lecture. Thank you very much for listening. Thank you.


