Lecture 1 - Functions of several variables

Lecture 2 - Limits for multivariable functions - I

Lecture 3 - Limits for multivariable functions - II

Lecture 4 - Continuity of multivariable functions

Lecture 5 - Partial Derivatives - I

Lecture 6 - Partial Derivatives - II

Lecture 7 - Differentiability - I

Lecture 8 - Differentiability - II

Lecture 9 - Chain rule - I

Lecture 10 - Chain rule - II

Lecture 11 - Change of variables

Lecture 12 - Euler’s theorem for homogeneous functions

Lecture 13 - Tangent planes and Normal lines

Lecture 14 - Extreme values - I

Lecture 15 - Extreme values - II

Lecture 16 - Lagrange multipliers

Lecture 17 - Taylor’s theorem

Lecture 18 - Error approximation

Lecture 19 - Polar-curves

Lecture 20 - Multiple Integrals

Lecture 21 - Change Of Order Of Integration

Lecture 22 - Change of Variables in Multiple Integral

Lecture 23 - Introduction to Gamma Function

Lecture 24 - Introduction to Beta Function

Lecture 25 - Properties of Beta and Gamma Functions - I

Lecture 26 - Properties of Beta and Gamma Functions - II

Lecture 27 - Dirichlet's Integral

Lecture 28 - Applications of Multiple Integrals

Lecture 29 - Vector Differentiation

Lecture 30 - Gradient of a Scalar Field and Directional Derivative

Lecture 31 - Normal Vector and Potential field

Lecture 32 - Gradient (Identities), Divergence and Curl (Identities)

Lecture 33 - Some Identities on Divergence and Curl

Lecture 34 - Line Integral (I)

Lecture 35 - Applications of Line Integrals

Lecture 36 - Green's Theorem

Lecture 37 - Surface Area

Lecture 38 - Surface Integral

Lecture 39 - Divergence Theorem of Gauss

Lecture 40 - Stoke's Theorem