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Now, let me define what are generating series. So, we can associate several series with species 

and we want to look at these series in detail. So, first we are going to define what is the 

exponential generating function of the species F, what is that? Given a species F we mentioned 

that, the cardinality of F[U], for any finite set U only depends on the cardinality of U.  

So, therefore I can just talk about a fixed set {1, 2, 3, …, n}. The cardinality of F[U], for any 

n-elements set U is actually equal to the cardinality of  F[{1, 2, 3, …, n}]. Because, that is also 

another n-element set, and this cardinality, the number of structures of type F on n-element set 

is denoted by 𝑓𝑛.  

Now,  to form generating series, we can basically multiply by 𝑥𝑛 and then, depending on how 

𝑓𝑛 grows we will either normalize by 𝑛! or something like that. So, here we are going to do that 

so we define 𝐹(𝑥) =  ∑
𝑓𝑛 𝑥

𝑛

𝑛!𝑛≥0   and this as we have seen in the case of the generating 

functions, is called the exponential generating function of the species F.  

So, this is basically count 𝑓𝑛, and then if you want to recover 𝑓𝑛 you have to just find out the 

coefficient of  
𝑥𝑛

𝑛!
   in F(x).  
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 Using Taylor series expansion, whenever you are given the function F(x), you can use Taylor 

series expansion and then  multiply by 𝑛! . Look at the coefficient of 𝑥𝑛 in F(x) and by Taylor 

series it is 
𝑑𝑛𝐹(𝑥)

𝑑𝑥𝑛
|𝑥=0 . So, if you want, you can say Maclaurin series, it does not matter. So, 

evaluate at x = 0 and that is going to give you 𝑓𝑛. 
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Now, a formal power series in any number of variables is expressed, so you can talk about 

formal power series in one variable two variables or infinitely many variables. So, if you have 

infinitely many variables you can just define it as follows.  



𝐻(𝑥1, 𝑥2, … ) =  ∑ ℎ𝑛1,𝑛2,…

𝑥1
𝑛1𝑥2

𝑛2

𝐶𝑛1,𝑛2,…
𝑛1,𝑛2,𝑛3,…

 

Where 𝐶𝑛1,𝑛2,… is a given family of non-zero scalar. In our case it was n! here, it could be 

anything else here, so that kind of thing is basically a formal power series and you can 

generalize it to any number of variables as you please. 
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Now, here are some examples of species again, so S is the species of permutations and the 

generating function 𝑆(𝑥) =
1

1−𝑥
, because we know that the number of permutations on an n-

element set is basically n!. So, because it is we have n! of them, ∑
𝑛!

𝑛!
 = ∑ 1  

Then, if you talk about the species of linear orders, so we know that there is also n! many linear 

order, so 𝐿(𝑥) =
1

1−𝑥
 , where L(x) is the exponential generating  function for the species of 

linear orders. 
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C(x) is the cycle species, cyclic permutations, then what is that it is basically summation, we 

know that there is (n-1)! of them, so therefore you will get 𝐶(𝑥) = ∑
(𝑛−1)!𝑥𝑛

𝑛!
=  − log(1 − 𝑥). 

Similarly, can you find out the, the exponential generating function for the species E of sets, 

the species  𝜖 of elements, species P of power sets, and species X of singletons and species G 

of graph simple graph. So, take it as an exercise and try to find out what are the generating 

functions or generating series. 
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 Now, so we were talking about so far the, counting the objects of a particular species, that you 

can make on a set U with let say n-elements. Now, there could be several objects when I use 

the set, the set relabeling, there could be several of them that may be isomorphic. So, there will 

be several isomorphic structures. When I talk about graphs on the set {1, 2, 3, 4} you will have 

several graphs but several of them could be isomorphic. 

Now, I do not want to let us say that count all these isomorphic things separately, I want to just 

find out how many different inequivalent structures are there, so for that I can consider the 

isomorphism class, isomorphism types of F-structures, species F-structures, on the set let us 

say F[n]. So, take any n-element set, [n] here, look at F[n] and then we can look at the 

isomorphism types of this, this type on F[n], on this set. 

Now, let me define an equivalence relation as follows. The equivalence relation ∼ it says that, 

for any two structures s and t  in F[n], s ∼ t if and only if I can find a bijection 𝜋: [𝑛] → [𝑛] to 

such that 𝐹[𝜋](𝑠) = 𝑡. So, if that is true, so if you can find such a bijection 𝜋, then we can say 

that s and t are basically equivalent then they are isomorphic that is the idea. 
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Now, an isomorphism type of F-structures of a fixed order let us say  an n-element set is an 

equivalence class of the equivalence relation ∼ on  F[n]. So, the equivalence classes are called 

isomorphism types, so it is basically  

𝑇(𝐹𝑛) = 𝐹[𝑛] ∕∼ . Then   𝑇(𝐹) = ∑ 𝑇(𝐹𝑛)𝑛≥0  



So, for all possible structures we have T(F). So for n greater than or equal to 0, you take 𝐹0, 𝐹1𝐹2 

etcetera which are structures of type F on an n-element set and then, you are looking at the, the 

equivalence classes of these structures. Now, let me denote by small 𝑓𝑛̃ as the number of 

isomorphism types of F, how many distinct type of structures are there. 
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Then the isomorphism class generating  series which is called 𝐹𝑛̃ is the ordinary power series  

𝐹𝑛̃ =  ∑ 𝑓𝑛̃𝑥𝑛,    𝑓𝑛̃

𝑛≥0

= |𝑇(𝐹𝑛)| 

This the ordinary power series not the exponential power series. Because, when you are talking 

about isomorphism types, we are just counting the class, how many classes are there.  

Usually the numbers grow much smaller, so, we do not want to use exponential generating 

series. Then we have the ordinary power.  For example, .  

Now you are looking at linear orders, 𝐿̃(𝑥) =
1

1−𝑥
  , because, when we are arranging objects 

you have n! many ways to do that but, if you consider all of them to be identical, the labeling 

is not important then whichever order that you are going to put in a line it is, exactly the same 

line. 



So, there is only one way to do that and because of this summation 𝑥𝑛 and reduces to 
1

1−𝑥
. 

Therefore, we get that the isomorphism type generating function for the linear orders is 
1

1−𝑥
. 

Now, if you look at the cycle permutations, 𝐶̃(𝑥) ,  can you show that, 𝐶̃(𝑥)  = 
𝑥

1−𝑥
.  

So, it basically is a shift by 1 for 𝐿̃(𝑥) ,  and can you connect this and see why, why this is this. 

Similarly, if you look at the 𝐸̃(𝑥),  E is the species of sets, so what is  𝐸̃(𝑥) ? So I am putting 

a set structure on U. So, it does not matter then there is only one so therefore, it does not matter 

whether it is labeled or not. 

So, you will still get a set with just one element and the count is going to be exactly 1. So it 

will also be 
1

1−𝑥
. What is the species of elements, again can you show that 𝜖̃(𝑥)  = 

𝑥

1−𝑥
. If P is 

the species of power set what is  𝑃̃(𝑥) ? Show that, 𝑃̃(𝑥)  = 
1

(1−𝑥)2   . 

(Refer Slide Time: 13:07) 

 

Now, even more interesting is that, 𝑆̃(𝑥), what was S, S is the species of permutations and we 

can show that  𝑆̃(𝑥) =  ∏
1

(1−𝑥)𝑘
∞
𝑘=1    .Now, what you can see from this is that 𝑆̃ was this 

function, on the other hand 𝐿̃(𝑥) =
1

1−𝑥
  . 

Now, when we are looking at linear orders and permutations, we can all we often have this 

tendency to see them as kind of the same thing. We are permuting objects and we are arranging 

them in n! different ways. 



 

Since, there is a bijection between these two, we think that, they are kind of the same thing. 

Often, there is a mistake came that linear orders are the same as permutation. on the other hand. 

This tells you that, when you look at the unlabeled structures, the isomorphism classes, we see 

that, they are in the different objects because  𝑆̃(𝑥) is actually very different from 𝐿̃(𝑥). 

Then, for the singletons  𝑆̃(𝑥) = 𝑥, these things, you can try to derive this identities, as 

homework. Now, some remarks.  So, this is something that I already remarked, that  

𝑆(𝑥) = 𝐿(𝑥) =
1

1−𝑥
  but  𝑆̃(𝑥) ≠ 𝐿̃(𝑥).  Thus, permutations are actually different from linear 

orders. 
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Now, let us look at the cycle index series. So maybe, I should just mention one more thing, see 

S(x) and L(x) was 
1

1−𝑥
, but you see if you look at L(x),  L(x) was 

1

1−𝑥
 then 𝐿̃(𝑥) was also 

1

1−𝑥
. 

This should not confuse you. 

Here, L(x) is 1 by 
1

1−𝑥
 .  Because it was the exponential generating function, and we were 

actually dividing, by n!. On the other hand here we have the ordinary generating function, 

where we are not dividing by n! therefore, the count is 1. And there it was n factorial we made 

it 1 by dividing by n!.  



So, these two are indeed very different. L(x) and 𝐿̃(𝑥), one is exponential generating function, 

which is 
1

1−𝑥
, by chance and 𝐿̃(𝑥) is also 

1

1−𝑥
. But it is the ordinary generating function. Now, 

because these are different we see that, permutations are different from linear orders as species. 

Now, finally I want to introduce one more series associated with the species which is called 

cycle index series. So, to define that, let us first define and look at the following. So U is a 

finite set and 𝜎 is a permutation of U, where 𝜎 the permutation has the cycle type so, we studied 

this, in our class earlier cycle type (𝜎1, 𝜎2, … ), where 𝜎𝑘 in general is the number of k-cycles 

in 𝜎.  

Now, if you are given an n-element set U then we will see that this the cycle type will all be 0 

after the nth term. 𝜎𝑛+1 onwards, will all be 0. This is something immediately clear there cannot 

be a cycle of larger length. Now we denote by 𝑓𝑖𝑥 𝜎 = |𝐹𝑖𝑥 𝜎 | where Fix 𝜎 as we saw earlier 

again, it was the, the number of elements fixed by the permutation Sigma, which is actually 

equal to 𝜎1.  

Basically, the number of unit cycles, singleton, single cycles in the permutation, the 

representation of permutation of cycles. 
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Now, the cycle index series of species F of structures is the formal power series in an infinite 

number of variables  



𝑍𝐹(𝑥1, 𝑥2, … ) = ∑
1

𝑛!
 ( ∑ 𝑓𝑖𝑥  𝐹[𝜎] 𝑥1

𝜎1

𝜎∈𝑆𝑛

 𝑥2
𝜎2 … )

𝑛 ≥0

 

So, it should be pretty clear where, these objects are coming from what this objects mean from 

our short excursion we did to poly’s  theory. So we do not go into the details further. Think 

about this and try to understand if you have any questions come back to me. 
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Now, here is some examples I am going to give, I am not going to go into details how I obtained 

this or how we obtained this, it takes a lot of time to explain many of these things but, you 

should be able to work out the details for at least some of these examples. So, as a homework 

you can try to figure out why they are the same? So, if you look at the cycle index series of the 

linear structures like linear order.   

𝑍𝐿(𝑥1, 𝑥2, … ) =
1

1 − 𝑥
 

Now, on the other hand, if you look at the cycle index series of the species of permutations that 

is actually  

𝑍𝑆(𝑥1, 𝑥2, … ) =
1

(1 − 𝑥1)(1 − 𝑥2) …
 

What is the cycle index series of the species E of sets?  



𝑍𝐸(𝑥1, 𝑥2, … ) = 𝑒𝑥1+
𝑥2
2

+
𝑥3
3

+⋯
 

 So it should be pretty clear once you understand what is this exponents meaning, and how you 

connect it with the cycle types that we are talking about earlier, 𝜎, 𝜎1, 𝜎2, etcetera. And if you 

do that you should be able to figure out why this indeed makes sense. 
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Then as homework derive the cycle index for the species 𝜖 of elements. Second question is to 

prove that, F(x) = 𝑍𝐹(𝑥, 0,0, … . ).Let us look at one example here. 

If you substitute for, this was just x, so I will get 1 by 1 minus x and that is precisely  exponential 

generating function for the linear orders. Then  𝐹̃(x) also you can obtain from the cycle index. 

So cycle index contains much more information than, what is contained in the exponential 

generating function and the type generating function. 

Because, you can get both of this directly by just simple substitutions, for example, 𝐹̃(𝑥) =

𝑍𝐹(𝑥, 𝑥2, 𝑥3, … ).  So, you just replace 𝑥𝑖 with 𝑥𝑖 in 𝑍𝐹 and you will get 𝐹̃(𝑥). So, the type 

generating function can be computed, in fact to compute the type generating function for most 

of the species, you need to go through finding the 𝑍𝐹 and then do this.   

It is not immediately clear, how to count the type energy function without using the help of the 

cycle index, I mean for some things like linear orders and all we know immediately, but 

otherwise it is not very direct. So, prove these two statements, and these are not very difficult 



just substituting this and you will see, what is happening there and using some of the 

observation that we have before, you should be able to do this. 
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Now, let me define operations on species, so what do you mean by operations on species. I am 

talking about addition or some products or taking derivatives or exponentiations, compositions 

and all kind of things we can talk about. 

So, what is the meaning of sum of two species? So given speech is F and G, (F + G) [U], so 

see this is the basic way to define any object on a species, given any finite set U the species 

tells you, the rule to generate species of U for any finite set.  

So, therefore (F + G)[U] should tell you how to do that, and what is this I define this as the 

disjoint union F[U] ∔ G[U]. So, (F + G)[U]  =  F[U] ∔ G[U] ,  where, I consider the disjoint 

union, in the sense that, it is possible that the species F and G are such that for some elements 

for example on the empty set or something else, it might create the same kind of objects but I 

want to distinguish them by marking it as the elements coming from the species F and the 

elements coming from G. So, I want to make sure that the union is disjoint, so I can do this by 

specially marking each type F structure with a marker that it is coming from F and each G type 

structure with another marker to say that it is coming from G. So, this way I can make the 

disjoint union. 

And what is the disjoint union looking like it is basically, so F + G on this structure is in the 

picture, pictorial manner it is basically an F structure on the same set, plus a G structure on the 



same set. So, all possible F-structures here you can make and all possible G-structures you can 

make on the same set. And all of them put together is basically the F + G structures on the set, 

we are looking at. 

And if  𝑐𝑛 is the number of success on n-element set of type F + G and 𝑎𝑛 and 𝑏𝑛 are the 

corresponding number of type F elements and G elements on the same set. Then, 𝑐𝑛 =  𝑎𝑛 +

𝑏𝑛 because if you are doing this, this should be the case. 
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So, what we want is that 𝑐𝑛 =  𝑎𝑛 + 𝑏𝑛 and for every function and every bijection   𝜎 from U 

to V, we should have (𝐹 + 𝐺)[𝜎]: (𝐹 + 𝐺)[𝑈] → (𝐹 + 𝐺)[𝑉]. This should be again intuitively 

clear, so we want this also. And we also want the functions to be adding, the generating function 

should be added the exponential generating functions should be added together.  

So, an example is the species of sets E. What is the generating function for E? which is 𝑒𝑥, we 

saw this or you can prove this. Now, we know that 𝑒𝑥 = cosh  (𝑥) + sinh (𝑥) something that 

we have studied in calculus. But what is even more interesting is that, now the species E can 

be written as the sum of two species, which is the set of all even sets and set of all odd sets, so, 

the species of even sets and species of odd sets. 𝐸 = 𝐸𝐸 + 𝐸𝑂 

Now, what is the generating function for the species of even sets that is actually cosh (x) and 

the generating function for the species of odd sets is sinh (x). Any set is basically either an even 

set or an odd set and the generating function for even set is this, and generating function for 

odd set is this.  



We should have this identity, 𝑒𝑥 = cosh  (𝑥) + sinh (𝑥). So, if you find it easier to prove that 

𝐸𝐸 is this, and 𝐸𝑂 is this then you have another proof of this identity or using this identity you 

have a proof of this I mean all these things one can do. 
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Now, a family 𝐹𝑖 of species is said to be summable family, if for any finite set U, 𝐹𝑖[𝑈],  the 𝐹𝑖 

type of objects on U is empty, except for a finite number of indices 𝑖 ∈ 𝐼. So, if there are 

infinitely many, so I could be an infinite family but if only for finitely many such i’s, 𝐹𝑖 can be 

defined and for everything else it is basically empty. 

Then, we say the family is summable, because when we sum over all these things we want to 

still remain in the domain of finite numbers. We are always talking about finite sets and the 

finite set of objects that you can make out of this finite set of objects. So, therefore we want to 

always stay in the finite domain so, we will say that “Okay” a family is a summable if in that 

family indexed by i only finitely many i’s define any objects. And everything else produces 

empty.  

Then we have that, ( ∑ 𝐹𝑖 𝑖∈𝐼 )[𝑈] = ⋃ 𝐹𝑖[𝑈] × { 𝑖 }𝑖∈𝐼   

So this is basically used to make sure that, we are looking at disjoint union. That is, the only 

purpose of that and whenever this is empty we do not have anything here in the  product. 
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And this also satisfies that, if whenever there is a bijection 𝜎, (∑ 𝐹𝑖𝑖∈𝐼 )[𝜎](𝑠, 𝑖) = (𝐹𝑖[𝜎](𝑠), 𝑖). 

Now, this is the general fitting and for the special case, we have this canonical decomposition 

when we want to separate the elements that we are making the structures that we are making 

on sets of different cardinalities. So, when you are looking at the n-element set U and so, what 

we want to say is that, like 𝐹𝑛 is basically going to look at the type F-structures that you make 

on n-element sets only.  

So, 𝐹𝑛[ 𝑈] = 𝐹[𝑈], if |U| = n. And if U has more or less elements there is nothing that you can 

depend on, that belongs to 𝐹𝑛. So, this way we can always decompose so, the family 𝐹 = 𝐹0 +

𝐹1 + ⋯ + 𝐹𝑛 + ⋯, where 𝐹𝑖 is the species made out of an i-element set. The species are the 

structures of type F made out of i-element sets. So, only i-element sets can produce elements 

in 𝐹𝑖.  

Because of this we know that there is only finitely many indices and therefore, we directly 

follow from the above property, that we have the summability and therefore, I can write it as 

the disjoint union of 𝐹0 plus 𝐹1 plus etcetera. So example is, you are looking at polygons, so 

polygon with 0 elements, 1 element, 2 elements, 3 elements etcetera and then all of them 

together from the species of all polygons. 

(Refer Slide Time: 32:50) 



 

Now, we quickly look at the product of two species so, F and G are species I denote by F . G 

the product species, FG. So what is the product species FG, its generating function FG(x) is 

the product of the generating function. So, we want this and we are going to define the product 

as something that works out for this property to hold. So, what is 𝐶𝑛, 𝐶𝑛 is the number of 

elements of type F.G on an n-element set.  

𝑐𝑛 =  ∑ (𝑛
𝑘

)𝑎𝑘𝑏𝑛−𝑘
𝑛
𝑘=0 , so these all we saw when we define the product of exponential 

generating functions. And what is this so the product of two species is denoted in pictorial way 

as follows, you have this set and you are putting an FG- structure on this, which is equivalent 

to taking the same set finding some subset putting an F-structure on this subset.  

Looking at the complement of this and putting a G structure on the remaining elements. So, 

this picture tells much more things that, one can express in words, how the product species 

looks like is very clear from the picture. 
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So, basically, when we are looking at the product it is basically partitioning the set U to two 

sets U1 and U2, put an F-structure on U1 and the G-structure on U2. And then, because of this, 

we know that, what happens to FG on U is basically, the different ways you can do this to U1 

and U2, F[U1] and F[U2], you are looking at the Cartesian product. And this will be our 

structures. The structures will be of this type F[U1 ]× G[U2]  

And sum over all these U1 and U2, which are basically partitions of U to 2 sets and that should 

give you the species FG. And what happens to a permutation 𝜎 or a bijection 𝜎?  The bijection 

𝜎 is taken by FG the product. The transport of 𝜎  under this product, is basically what happens 

to an element s, an object of type FG. Now, what is s, s is an object of type (f, g), but we know 

that any such s is basically of this type, F[U1] × G[U2], so therefore it has actually two 

components. 

So, let us say, that is basically f and g. So, if s is (f , g), then this Sigma must act as separately 

on f and g, where 𝜎𝑖 is the restriction of 𝜎 to just Ui. So, 𝜎𝑖 acts on the entire U1 × U2, but the 

restriction of 𝜎 to  U1 or U2 will give you 𝜎1 and 𝜎2.  

So, (𝐹. 𝐺)[𝜎](𝑠) = (𝐹[𝜎1](𝑓), 𝐺[𝜎2](𝑔)).  
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So, let us look at a very interesting example of permutation. The species of permutations is 

denoted by S and we know that permutations are basically cycles. So you have several cycles 

here and this cycles, define the permutations. Now, we observe that like in this permutation, 

we have these cycles with more than one element.  

And there could be some cycles with just one element. So you collect all the cycles with one 

elements, put them together since the 1-cycle does nothing, it maps to itself, these are basically 

elements which does nothing else. So, I collect them together it forms a set, so it form a set 

partition U1 and then, then you have the cycles where you have at least two elements.  

Now, where all the cycles have two elements, the product of such cycles will be a permutation 

where no element is fixed, so therefore they are called the derangements. Derangement is a 

permutation without any fixed points. So, we can see any permutation, as basically a possibly 

empty set of elements together with derangements. 

So, we see that, the species of permutations is basically the product of the species E of sets and 

the species Der of derangements. Because, given any permutations I can do this, I can basically 

look at the 1-cycle form a set out of these elements. And then the remaining larger cycles 

defines a derangement and on the other hand, given any set and any derangement of the 

remaining elements, I can put them together, and it defines a permutations, of all the elements. 

So, therefore there is one to one correspondence and then we see that, species of permutations 

is the product of species of sets and derangements. Now, this helps us to compute for example, 



the generating functions for derangements, if we know what is the generating function for S 

and E. So, we computed this earlier. 
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𝑆 = 𝐸 . 𝐷𝑒𝑟 

𝐷𝑒𝑟 =
𝑆

𝐸
 

𝐷𝑒𝑟(𝑥) =
𝑆(𝑥)

𝐸(𝑥)
=  

𝑒−𝑥

1 − 𝑥
 

= (∑(−1)𝑖
𝑛!

𝑖!
𝑖≥0

 ) ∑ 𝑥𝑗

𝑗≥0

 

this is the geometric sequence.  

Now, the product of these two, we can immediately find because, the coefficients here are just 

1’s. So therefore what is the product of these two and you are looking at the coefficient of x 

raised to n, by n factorial that is basically n factorial into, look at the terms which are going to 

contribute to x raised n, I have to take some element from here. 

And the remaining numbers should come from here, so that j + i must be equal to n. So if I 

collect them, altogether I know that, there could be at most n + 1 terms. So  



𝑑𝑛 = 𝑛! (1 −
1

1!
+

1

2!
− ⋯

(−1)𝑛

𝑛!
) 

And this is the formula for 𝑑𝑛, we calculated earlier using principle of inclusion and exclusion. 

But, now here we without using any such thing, we can directly compute the formula just by 

looking at the generating function for the permutations and sets. So, this is a nice way to 

compute other generating functions which are not easy to combine. 
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Another example is the power set. set of all power sets on set U is basically the product of E 

with itself. So E is the species of sets, so species of sets with itself. And why is this, this should 

be clear because, any subset is basically partitioning a set U to U1 and U2, one is to keep and 

the other one is to throw out.  

So, that forms a subset. So basically power set of X is basically the product of E with itself, 

and that should also make sense because, we get 𝑒2𝑥, the number of objects of this type is 

basically, if you look at the coefficient of 𝑥𝑛 it will be 2𝑛. On the other hand, when it is just 

𝑒𝑥, this is just one that is only one such structure. So you will get this directly from here.   

So, with that example I will stop for today, then, we will continue with more examples, more 

examples of more operations on species and with that let me stop today. 

 

 


