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In case the group is 𝐺1. So of course, there are 12 colourings there are 12 colourings when 

we are using two colours for red so two. So, there are four squares two of them are always 

going to be coloured red so it does not matter the first red or second red, there is no 

difference. Therefore, we need to just look at the all possible colourings. Basically, we 

have four factorial possibilities but two of them are the same by two factors so you have 

the multiset, this is the first thing that we learned in our course.  

Therefore, we have 12 colourings and all are inequivalent under the trivial group. Because  

we are not allowing any changes to be made so once you fix the 12 different colourings 

they are all going to be inequivalent they are all different.  

So, then 𝐺2 is the group where we allow the vertical reflection. So, under vertical reflection 

we can see that there are six inequivalent colourings. So, why is this? For example you 

know under the vertical reflection you have r, r, b, y and it is basically like if you put a 

reflection and then you have r, r, y, b also.  

So, r r b y and r r y b belong to this particular one class. Then similarly, you will see that 

under vertical reflection this one for example is equivalent to r, r you know here and b and 



y are interchanged. Similarly, in each of these you can find  one another colouring to which 

this is actually identical under the reflection.  

So, under reflection you take the reflection of this whatever you get they are both 

equivalent. So, you get six inequivalent colourings because these two are equivalent these 

two are equivalent these two are equivalent these two are equivalent etcetera. So, under 

the action of 𝐺2 you have exactly six colourings.  
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Now, under 𝐺3, so reflection on the main diagonal you will see it is slightly different this 

is why I said 𝐺2 and 𝐺3 may be isomorphic as abstract sub groups. But, as  permutation 

groups they are different. For example, the action of 𝐺3 here is slightly different.  

So, if you look at these colourings, each of these colouring under the reflection on the 

main diagonal, you will see another colouring so you will see that for example b here and 

r here these are different colouring. And they are inequivalent again you know y and r are 

swapped r and y are swapped here and similarly r and b are swapped here again y and b 

are swapped here.  

So, they are all having two elements in the class so you will see that . But, on the other 

hand this one b, y, r, r under reflection this does not give anything else. It remains the 

same, so there is only one element in this class. Similarly, if you look at y, b and r, r, again  

there is only one element in this class.  

So, these are different under the reflection with respect to the main diagonal. So therefore, 

instead of the  six inequivalent colouring, we have seven inequivalent colourings here. So, 



𝐺2 and 𝐺3 are isomorphic as abstract groups but as permutation groups have different 

structure.  

And if you think about it you will see that the difference comes from the  difference in the 

cycle lengths of elements. For example, here (1, 2), (3, 4). (1, 2) is a cycle (3, 4) is a cycle 

there are two cycles of length two on the other hand under the reflection on the diagonal 

you have two one cycles and one two cycle.  

And this is precisely what makes them different. So, they are the difference in their action 

is precisely because of the difference in the cycle structure. So, we will see more about 

this when we go further. In fact we are going to make use of precisely this observation and 

that is the essential part of our polya's theory.  
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And then we have 𝐺4, the group of rotations of X so all possible rotations and there are 

three classes with four elements. So, sizes of each class equals the order of the group. So, 

why is that? For example, what is the order of the group?  

It is four; there are four rotations of this identity and then the three other rotations and why 

they are precisely 4 because you will see that, under rotation no colouring has symmetry 

with respect to this rotation. So, you take any colouring that we have.  

If, after rotation, if it remains, so we have this 12 colouring that we started with we did 

not draw them but think of this you can take an example and draw them. So, take any of 

the 12 different colouring not any take all the 12 different colourings and see that if you 

apply rotation, they are always going to be inequivalent.  



So, there are three rotated elements other than the identity, therefore every class has 

exactly four elements; identity as well as the other three permutations. They will all give 

different colourings and each of them are equivalent under rotations. So, you will see that 

if you rotate this you will get three more different colourings if you rotate this you will 

get another three if you rotate this you will get another three so therefore all the 12 

colourings appear.  
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Now 𝐺5 is the dihedral group. So, under the dihedral group we have only two elements so 

the first class has eight elements and second class has four elements. So, you will see they 

are different because you know under the reflection this r and r they will not change and 

therefore you have less number of elements in this class and you can verify that this has 

eight elements.  

So, if you do all possible rotations of reflections you will see that this will lead to eight 

different objects. Now, another observation that we can make is that the size of a class is 

the index in G of the subgroup fixing some fixed colouring in that class. So, think of this 

and try to see why? So, size of class is the subgroup fixing some fixed colouring in that 

class for any action of a group this is a property that you can see.  
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Then you have finally 𝐺6 which is the set of all permutations there is only one class. 

Because, we are saying that no matter what permutation we take, they are all equivalent. 

So therefore, by permutation you can always get a colouring from one to other if the 

number of times each colour appears is the same.  

So, if since we started with saying that now we have exactly two red squares and one blue 

and one yellow square, the number of cells in which red appears is always two and number 

of times blue appears is always 1, number of times yellow appears is always 1. So, we see 

that when you take permutations, permutation cannot change the number of times the 

colour appears.  

We are just saying that this cell is mapped to the cell that cell goes to the cell etc. But the 

colourings remain same. So, the number of times each colour appears is always different. 

So, that is it. We have these six groups and each group acts on the set X and then you 

know this action will also give different colourings and then under this action of the 

permutations we can say that they are basically symmetries that we are looking at for the 

objects.  

And these symmetries will tell you how many different inequivalent colouring are there 

under this action of symmetries. Now, I forgot to mention what is index of a subgroup? 

So, index of a subgroup is the number left cosets or equivalently number of right cosets. 

So, when I said that, the size of a class is the index in G what I said is that if you  look at 

the subgroup of a group that we are looking at, so take a subgroup and then look at what 

is the number of cosets this subgroup has in G. That is called the index. So, now it should 

make more sense and then see why this is precisely the number of elements that appears 



in that class so this should give you a better idea. Now, this is why I said that we should 

also look at cosets.  
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Now, consider the same set that we are looking at where we consider the group which is 

the dihedral group of all rotations and reflections. Let t(i, j, k)be the number of 

inequivalent colourings using the colours r b and y of X using the colour red i times colour 

blue j times and colour yellow k times.  

So, we have the set X you have the dihedral group acting on this set and we are looking at 

the number of inequivalent colourings under the action of the dihedral group where the 

red colour appears i times precisely, blue colour appears j time precisely and yellow colour 

appears k times. So, earlier we were looking at 2 red, 1 blue and 1 yellow. Now, we can 

say that instead of this let us say that we have i times red j times blue and k times yellow. 

Now, of course you know if X has exactly four elements we should be clear that, i + j + k 

= 4. Because, we are colouring all the cells and it can only change within this restriction.  
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Then now we want to collect the information basically that counts t(i, j, k) for different 

values into a generating function. So, this is something that we are already familiar with. 

So let us write  

𝐹𝐺(𝑟, 𝑏, 𝑦) =  ∑ 𝑡(𝑖, 𝑗, 𝑘)𝑟𝑖𝑏𝑗𝑦𝑘

𝑖+𝑘𝑗+𝑘=4

 

So, r, b, y can be considered as variables of this generating function so instead of one 

variable now we have several variables. So three variables here. If you look at the 

coefficient of 𝑟𝑖𝑏𝑗𝑦𝑘 it should precisely tell you how many inequivalent colourings are 

there under the action of G. So, we are putting it into the form of a generating function 

this is how we define the generating functions anyway. So, our generating function 

𝐹𝐺(𝑟, 𝑏, 𝑦)  is this one.  
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Now, what is the value? So, you work out the details you know looking at each colour 

appear and you see that how many are there and then apply the dihedral group and see how 

many inequivalent colourings are there.  

𝐹𝐺(𝑟, 𝑏, 𝑦) = (𝑟4 + 𝑏4 + 𝑦4) + (𝑟3𝑏 + 𝑟𝑏3 + 𝑟3𝑦 + 𝑟𝑦3 + 𝑏3𝑦 + 𝑏𝑦3)

+ 2(𝑟2𝑏2 + 𝑟2𝑦2 + 𝑏2𝑦2) + 2(𝑟2𝑏𝑦 + 𝑟𝑏2𝑦 + 𝑟𝑏𝑦2) 

So, you will see that this is actually going to be equal to 𝑟4 + 𝑏4 + 𝑦4, because there is 

only one colouring where all the cells are coloured with the red. I mean whatever else you 

are going to do is going to be the same if you are using only red colour. Similarly, 𝑏4  and 

𝑦4 is very clear. 

 Similarly, 𝑟3 𝑏. So all three coloured red and then one is blue of course you have different 

colourings but then under the action of dihedral group you will see that they are all the 

same. Because, by rotation you can get this.  

Similarly, 𝑟𝑏3,  𝑟3𝑦, 𝑟 𝑦3, 𝑏3𝑦, 𝑏 𝑦3. So, if I am using only two colours one of them three 

times then you have this. But, on the other hand if you are using colour two times so r for 

example is appearing two times 𝑟2 and b is appearing two times. Then you will see two 

different colouring.  

So, even under the action of dihedral group you will see that there are two different 

colourings are possible. And similarly, for 𝑟2𝑦2,  𝑏2𝑦2. And then as we checked before in  



𝑟2𝑏𝑦,  r is appearing twice b is appearing once and y appearing once this is precisely what 

we calculated in the previous example.  

Where we are looking at this we say that there are two in this class 𝐺5 has exactly two. 

These are the two representatives here. So, you will get two and for all the other symmetric 

cases 𝑟𝑏2𝑦, 𝑟𝑏𝑦2. So, check this I mean it is quite easy and make sure that this is precisely 

the generating function that we are looking at.  

Now, it is easy to observe and also see why that 𝐹𝐺( 𝑟, 𝑏, 𝑦) is symmetric in all its variables 

r, b and y. Since, the names of colours does not make any difference I mean I can call red 

as blue and blue as red just renaming. So therefore, it should be symmetric. So, we have 

this.  
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Now, let us look at some things from this so if you look at 𝐹𝐺(𝑟, 𝑏, 𝑦), I substitute with the 

value 1 so r becomes 1, b becomes 1 and y becomes 1 and what happens to this right hand 

side? So you get 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 2 (1 + 1 + 1) + 2(1 + 1 + 1).  

So, all together what you will get? So, see what you will get there and you should get the 

total number of inequivalent colouring. I mean without the restriction on a specific number 

of times each colour appears you will see that if you are using the colouring using this 

colours on the four squares you will see that, this is precisely the number of colouring 

possible. 

So, 21 will be your total number of inequivalent colourings so you can verify that. Now, 

to generalize let us now use an n element colour set instead of the 3-elements set. Let us 

say that we are using 𝑟1, 𝑟2, 𝑟3, … , 𝑟𝑛 to colour the set X. So, we use more colours then 

what can we see.  
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So, the names does not matter only the multiplicities of the colours matter. Multiplicities 

of the colours (how many times the colour appears) can make the difference. And again, 

the order of this colour in which this multiplicity occur also does not matter. So, what are 

the possible cases?  

One possible case is that all 4 colours are the same we have  𝑟1 is appearing in all vertices 

𝑟2 is appearing all the time or one colour appears thrice and another one appears once this 

is another possibility. We have only four squares to colour.  



Then two squares are given the same colour and another two colours are given the same 

colour using two different colours. Then one colour appears twice and two colours are 

appearing only once. Then 4 colours are all 4 distinct colours. So, these are the possible 

cases and there is nothing else one can easily verify.  
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Now, these 5 cases correspond to the 5 partitions of 4 this is something that you should 

observe which may be not very easy but if you think about this it comes true. That is 

basically what are the partitions of 4? We have 4 by itself then you have 3 + 1, 2 + 2 

Then you have 2 + 1 + 1 and 1 + 1 + 1 + 1. So, this basically corresponds to partitions of 

integers.  If you have the total number of boxes to colour is four and if you have enough 

colours to colour from all it matters is how many times a colour appears and you know 

basically the multiplicities of the colours.  

And since the order does not matter you will get this as exactly the partitions of four not 

combinations. So, with respect to the first one you will see that all colours are same a, a, 

a, a they are all identical then for 3 + 1 you have a, a, a and b then you have a, a, b, b or a 

and a in the diagonal or b and b in diagonal. They are different then you have a, a in the 

diagonal b and c are different so which is 2 + 1 + 1 and similarly you have a, a here and 

b, c again 2 + 1 + 1. Then you have all four different so a b c d, a c b d, or a c d b.  
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So once, you have this it is easy to find out the generating function. So what is 𝐹𝐺(𝑟1,

𝑟2, … , 𝑟𝑛)?  

 

𝐹𝐺(𝑟1, 𝑟2, … , 𝑟𝑛) =  ∑ 𝑟𝑖
4

𝑖

+  ∑ 𝑟𝑖
3𝑟𝑗

𝑖≠𝑗

+  2 ∑ 𝑟𝑖
2𝑟𝑗

2

𝑖<𝑗

+ 2 ∑ 𝑟𝑖
3𝑟𝑗𝑟𝑘

𝑖≠𝑗 
𝑖≠𝑘
𝑗<𝑘

+ 3 ∑ 𝑟𝑖𝑟𝑗𝑟𝑘𝑟𝑙 

𝑖<𝑗<𝑘<𝑙

 

This is precisely the generating function that we have. And as we saw in the previous case 

if you substitute for all the variables to be one it will give you the total number of 

inequivalent colourings.  

Where I use exactly n colours. So, you verify this and you can find out the numbers if you 

want. And what is the number 𝐹𝐺( 1,1, … ,1)? 

𝐹𝐺( 1,1, … ,1) = 𝑛 + 𝑛(𝑛 − 1) + 2 (
𝑛

2
) + 2𝑛 (

𝑛 − 1

2
) + 3 (

𝑛

4
)   

So, you will see all these things verify all these things as a homework you can think of 

this and try to verify these things.  
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And what is this actually? This is more interesting part for this 𝐹𝐺  (1,1, … , 1) =
1

8
(𝑛4 +

2𝑛3 + 3𝑛2 + 2𝑛). 

And then what we observe from here is that the denominator 8 is actually equal to the 

order of the dihedral group. So, dihedral group 𝐺5 has exactly eight elements and eight 

happens to be the denominator and it is not a coincidence we will see later. Now, the 

coefficient of 𝑛𝑖 for example is the number of permutations in 𝐺5 with i cycles.  

So, how many permutations are there with 4 cycles there is precisely one. Therefore, I get 

coefficient of 𝑛4 to be 1.  So what are the permutations in 𝐺5.  

So, 𝐺5 has this identity then you have (1, 2, 4, 3); (1, 4) (2, 3); (1, 3, 4, 2) and then you 

have (1, 2) (3, 4); (1, 3) (2, 4); (1) (4) ( 2, 3); and (2)(3)(1, 4). So, these are the dihedral 

groups and what we are saying is that, how many permutations are there with exactly three 

cycles.  

So, we want to count that. So we will see that this one has three cycles this one has three 

cycles, anything else has having three cycles? Nothing. So we have coefficient of this is 

going to be two coefficient this is two here. 

Similarly, you will see that permutations with exactly two cycles will be three. There will 

be three of them and one cycle there is two of them and that is it. So, this is an observation 

that we can make.  This is one example that I had already written here. 

Now, we want to show that this is actually the case for all such situations. So, you will 

have, the coefficients of these terms are going to be precisely the number of times you can 



find a permutations or number of permutations in the group that we are looking at having 

exactly 3 cycles exactly 4 cycles exactly 2 cycles and exactly one cycle.  
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So, this can be generalized that is what it says. So, here we have the Burnside’s Lemma 

Burnside’s Lemma says the following. Let Y be a finite set and G be a subgroup of 𝑆𝑌. 

Now, for some permutation in 𝜋 ∈ G,  the set 𝐹𝑖𝑥(𝜋) = {𝑦 ∈ 𝑌, 𝜋(𝑦) = 𝑦}. 

That is 𝐹𝑖𝑥(𝜋) is the set of elements in Y that are unchanged under the action of 𝜋 

So, if I take for example, the identity permutation does not change any element. Similarly, 

we have 1 going to itself 2 go into itself 3 and 4 are interchanged in the dihedral group 

that we looked at. That is another permutation where 1 and 2 are fixed.  

So similarly, given a permutation we can see the set of all elements that are fixed by this 

permutation. So, that is the 𝐹𝑖𝑥(𝜋). Now, the cardinality of 𝐹𝑖𝑥(𝜋) is the number of cycles 

of length 1 in the permutation 𝜋, that is clear.  

Because, you know basically the cycle representation of the permutation tells you which 

are the elements that are mapped to itself these are the unit cycles. When we put a single 

element in the bracket in the cycle notation and that tells you that these elements are the 

fixed elements. So, then the cardinality of 𝐹𝑖𝑥(𝜋) is the number of cycles of length one in 

the permutation 𝜋.  
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Now, suppose we denote by Y/G as the set of orbits of G. So, what is the orbit of a group? 

When  the group acts on a set it basically moves the elements then we can look at the 

elements which come under a class.  

So, we are saying about the classes. Some elements are basically moved to other elements, 

mapped to other elements and then this forms a subset. So, this is basically the orbit then 

you know the cardinality of 𝑌/𝐺 =
1

#𝐺
∑ #𝐹𝑖𝑥(𝜋).𝜋∈𝐺  

 And the number of orbits of G is equal to the average number of elements of Y fixed by 

the elements of G. This is what Burnside’s lemma says. So we will see a proof for this in 

the next class. 

 

 

 


