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Now, this identity is called Euler identity because Euler proved this for the polyhedron he 

observed it and proved this and it has been generalized to graph later and it is called the Euler 

identity. So, let G be a connected plane graph. Plane graph means that it comes with the 

embedding. Because without the embedding you cannot talk about the set of faces. We talk 

about plane graph when you have the planar graph with a fixed embedding. Let G be a 

connected plane graph.  

So, we will assume the graph is connected then the following identity holds. That is, the number 

of vertices of the graph plus number of faces of the embedding is equal to the number of edges 

plus 2. |V| + |F| =|E| +2. Again, examples. So, if you take any tree there is no cycle there is only 

one face. The number of vertices is 6, number of edges is 5 and that is it. So, you have the 

identity. Similarly, you take any other graph, you have number of vertices 7 here, number of 

faces is 4 and then number of edges to be 9. So, this is the identity. Now, we want to prove this. 

So, how will you prove this? So, try to see if you can come up with a proof for this by yourself 

if not proceed further.  
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So, here is the proof. We use induction on the number of faces. There are several ways to prove 

this, we want to prove it by induction on the number of faces. So, if the number of faces is 

equal to one. So, when is the number of faces equal to one for an embedding on the plane? 

Only if there are no cycles because if there is a cycle that cycle already separates the region 

into at least 2 parts.  

So therefore, when the faces are equal to 1 then you cannot have any cycle. So therefore, the 

graph is acyclic and since we are assuming the graph to be connected the graph must be a tree. 

So, when the graph is a tree, the claim is that the identity always holds. So, can you tell me 

why? Think about this and see why the identity holds if the graph is a tree.  

The identity that number of vertices plus number of faces is equal the number of edges plus 2. 

Because we already know that for a tree the number of edges is equal to number of vertices 

minus 1. Number of edges is equal to number of vertices minus 1 so therefore, number of 

vertices plus the number of faces which is equal to 1 is actually equal the number of edges plus 

2 because number of edges is number of vertices is minus 1. So, that is the proof, hence we 

have the base case. So, once we have the base case, we can assume the result holds for all 

planar graphs, where the number of faces is less than k for some k greater than 1.  
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So, assume that the result holds for connected plane graphs with k greater than 1. Now, let us 

take any graph with more than let us say k faces. So, take any graphic more than k faces, k plus 

1 faces. And then we will use the index. How do you do that? So, again, maybe it is going to 

be illuminating. If you think about this for a few minutes and see can you solve now this by 

induction, can you complete the proof by induction?  

So, I will let you think for a few minutes and then pause the video and then continue after 

spending some time thinking about this. So, what we will do is that we will assume that the 

graph has k greater than 1 faces and then we will consider the cycles in this graph. Because if 

there is no cycle we know that there is only one face. So, take any face, any face boundary of 

the bounded face any face boundary is going to be a cycle.  

Take the face boundary of any bounded face for example, the a, b, c, d face here in this graph. 

If you look at this particular face it has 4 edges right in the boundary. Now, take any one of the 

edges that you want. You take any one of the edges that you want and then what you do is that 

you look at this particular edge. So, if you take the edges in the boundary of the cycle that edge 

separates exactly 2 faces that is what you should see.  

If you take any edge no matter which edge is that if it is in the boundary of the cycle of the face 

then that edge belongs to exactly two face. The face which is one of the internal faces and then 

the one which is the external face in this case and if you take for example, the other edge like 

this one then it is separates 2 regions, again 2 faces and these 2 faces are not joined by I mean 

like in the embedding.  

If you remove the points of the embedding, then these are disconnected components in the R 

minus the graph G. So, if you look at these components, they are basically separated by this 

edge and this edge belongs exactly 2 face right in the boundary of exactly 2 face. So, we have 

this observation. Now, what happens if I remove this one edge from the graph. So, look at the 

graph G minus this edge.  

If I removed the edge from the graph then I have removed let us say the edge cd. If I removed 

cd from the graph then the edge which was separating these 2 regions is no more present and 

therefore, these 2 regions gets collected into a single region. This entire area becomes one 

single region. So, what happens to the number of faces in the graph when I remove one edge 

of in the boundary of the cycle? The number of faces decreases by exactly 1. 



Because 2 faces have been merged into 1 face and nothing else happened to other faces and 

therefore, I get a graph with one less number of face. Now, if the number of faces is strictly 

less I can use induction now. I use induction because by induction hypothesis anything less 

than k the result holds and therefore, I started with a graph with exactly k faces and now, I have 

removed one edge the new graph has exactly k minus 1 faces. So, therefore, I can use induction.  
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So, how do I use induction? Now, if you look at the cycle. So, here is a formally written down 

argument. So, let C be any cycle and e be any edge of the cycle. So, the edge e lies on the 

boundary of exactly 2 distinct faces and deleting the edge e, these 2 faces gets connected and 

merged into a single face. Now, the graph G minus e is connected. And can you tell me why?  

So, the claim is that after removing the edge, the graph is still connected. This is not necessarily 

true always. But in this particular case, I claim that the graph the G minus e is connected. So, 

again pause the video and think for a few minutes before continuing. Now, the graph G minus 

e is connected because e was part of a cycle. So, if I remove one edge from part of one cycle 

then it is not going to disconnect the graph. Again, you can formally prove this using the 

arguments that we have studied before and once you have this,  
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It is easy. You have a graph which is connected and the number of faces is less. So, therefore 

by induction hypothesis it is actually the Euler identity. So, therefore, for the graph G\e the 

number of vertices in G\e plus number of faces in G\e must be equal to the number of edges in 

G\e plus 2, ( |𝑉𝐺\𝑒| + |𝐹𝐺\𝑒| = |𝐸𝐺\𝑒| + 2), the Euler identity holds. Now, what we know is 

that the number of faces is exactly one less than the number of faces in G.  

So, these equations are true.  Number of edges also decreased exactly by 1, that is how I got 

G\e, deleted exactly one edge. But what happened to the number of  vertices? It remains the 

same. Now, if you look at the earlier identity, the number of vertices in G\e is equal to the 

number of vertices in G. This is actually equal to the number of edges in G. On the other hand, 

I subtracted exactly one from the one term in the left side and exactly one from the one term in 

the right-hand side, so, the identity remains the same.  

So, therefore cardinality of |𝑉𝐺| + |𝐹𝐺| = |𝐸𝐺| + 2 and this also holds. I just added or 

subtracted, whichever way you want to look at one from both sides of the identity. Therefore, 

we have the proof of Euler identity. So, for any connected plane graph the number of vertices 

plus number of faces equal the number of edges plus 2. Now, you can ask what happens when 

the graph is not connected. So, I leave it as an exercise for you to figure out what happens if 

the graph has several components.  
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Now, here is a corollary. So, let G be planar in every embedding of the graph G on the plane 

the number of faces remains the same. You can have several embeddings of the graph. But, for 



example, I will show you the graph with the different embeddings. Let us take one example. 

Let us look at this graph. This has this embedding. It is a planar graph with a plane embedding.  

Now, look at another embedding of the same graph. Now, this is a different embedding of the 

graph because if you look at the cycles of the face length, so, look at the length of the faces in 

this embedding, you have a 3 cycle here, there is a 3 cycle here, there is a 4 cycle here and then 

there is a 6-cycle boundary on the outer outer face. On the other hand, in this embedding, you 

have other faces, how length, 3, 3, then  5.  

And, again, the boundary of this face is 5 here it was 3, 3, 4 and 6. So, the now the embedding 

is different. So, the embeddings are different, but then you can have several possibilities for 

different graphs, but in, no matter what this earlier theorem tells you that, the number of faces 

in the plane are embedding must always be the same, because the identity says that the number 

of vertices plus number of faces is equal to the number of edges plus 2. So, therefore, since all 

the other parameters are the same, number of vertices and number of edges remain the same. 

It must also follow that the number of faces remain the same. It is a direct corollary of the 

result.  
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Now, here is a nice homework question. Let G be a planar graph with k components. Generalize  

the Euler identity satisfied by this graph. So, the Euler identity for a graph with several 

components will be slightly different from the Euler identity for a connected graph. So, can 

you find out this identity? So, this is a nice homework.  



(Refer Slide Time: 16:24) 

 

Now, using this Euler identity we can prove several interesting results. It is a very powerful 

tool actually. And what we are going to do with this? First is to prove that the planar graphs 

cannot have too many edges. So, if you if you recall graphs, an arbitrary graph like for example, 

if you take the complete graph on n vertices, you can have n choose 2 edges which is equal to 

𝑛(𝑛−1)

2
, its close to 

𝑛2

2
. 

So, you have, many edges possible in a graph. On the other hand, one can prove that if a graph 

is planar you cannot have too many edges for this graph. So, if the number of vertices is fixed, 

then number of edges is bounded by a factor. Now, how do you prove this and why is this the 

case? So, an intuitive way to look at this why the number of edges is small is that, when you 

have an embedding, the faces, the boundaries of the faces must all have these edges that define 

the boundary of the face.  

But now, if you take any face, the face boundary has at least 3 edges, for any face to be defined, 

you need at least 3 edges, because you need cycles to define. Now, this is that like, when you 

have certain number of faces, then the number of edges must be related to the number of faces.  

Because you have the Euler identity, which says that number of vertices plus number of faces 

is equal to number of edges plus 2. So, since every face has at least 3 edges to be in the 

boundary, this puts a restriction on the number of edges. Now, we want to use this idea to prove 

formally, that the number of edges in any planar graph is at most, 3 times the number of vertices 

minus 6, for n ≥ 3. That is, |E| ≤ 3𝑛 − 6 ). 



For n = 2, you have this obvious counter example, the trivial case, where you have 2 vertices 1 

edge, where the identity is slightly violated. So, if n is at least 3, then we have the number of 

edges in the planar graph is at most 3 times the number of vertices minus 6. So, the proof uses 

the observation that every face boundary has at least 3 edges.  
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So, what do we do? We consider an embedding of the graph G and we suppose that the graph 

has let us say n vertices and the number of edges is denoted by m and number of faces denoted 

by f. So, the graph has n vertices, m edges and f faces. So, what we need to prove is that, m 

≤ 3𝑛 − 6. So, first of all, we observed that if the number of vertices is actually equal to 3 then 

the number of edges possible is also at most 3.  

Because even the complete graph on 3 vertices can have only 3 edges. And for n = 3 the identity 

is clearly true. So therefore, no because 3 × 3 - 6 is actually equal to 3. So therefore, 3n - 6, m 

is at most 3n - 6. Now, therefore we will assume that n ≥ 4 because the case 3 is done. So, let 

us start with the assumption that we have at least 4 vertices and we have the identity Euler 

identity says that number of vertices plus number of faces is equal to number of edges plus 2. 

That is, n + f = m+2.  
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Since there are f faces, let us call these faces by name, 𝐹1, 𝐹2, … , 𝐹𝑓 be the faces of the graph 

G. Now, since each face boundary must have at least 3 edges, we know that  

 3𝑓 ≤ ∑ |𝐹𝑖|
𝑓
𝑖=1 , where  the |𝐹𝑖| is the length of the face 𝐹𝑖, length of the face is the number of 

edges in the boundary of that face. 

But now, what we know about the relation between the faces of a graph and the edges is that if 

you look at the boundaries of faces, every edge is incident to at most 2 face. So, an edge cannot 

be contributed or counted by more than 2 faces.  

In the summation, an edge is only counted at most 2 times. Therefore, if you look at, length of 

the boundary of a face is basically the number of edges. Therefore, you will see that since an 

edge cannot be counted more than twice, ∑ |𝐹𝑖| ≤ 2𝑚
𝑓
𝑖=1 .  

 Now, we have the identity 3𝑓 ≤ 2𝑚  

We can now substitute this into the Euler identity, n + f = m + 2.  

So f = m-n+2. 
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3𝑓 = 3(𝑚 − 𝑛 + 2) ≤ 2𝑚 

3𝑚 − 3𝑛 + 6 ≤ 2𝑚 

𝑚 ≤ 3𝑛 − 6  

So, for any planar graph G we have shown that you can have at most 3n - 6 edges. Now, we 

will use the identity because we can assume that the graph is connected because if the graph is 

not connected what we can do? We can add edges to make it connected. We can add edges  to 

make it connected and which will only increase the number of edges. So, even after adding 

edges to make it connected, we have the identity therefore, for any planar graph you will see 

that the identity holds too.  



So, by proving it for connected graph we could generalize to other graphs. For arbitrary planar 

graphs now, we have the identity. We can now use this to prove several results, this idea. So, 

one way you can immediately think of using this theorem is that if a graph is given to you and 

you are asked to check whether the graph is planar only how to I mean the first thing that you 

can do is to check if the number of edges is more than 3n - 6. Because if the number of edges 

is more than 3n - 6 you know immediately that the graph is not planar, because by this result 

we know that any planar graphs will have atmost 3n - 6 edges. So, this can be used to prove 

some interesting results.  
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So, here is a homework, prove that if this planar graph, then G contains a vertex of degree less 

than or equal to 5. So, think of this and try to come up with that.  
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So, now we have the tool to prove that the graph 𝐾5 is not planar. So, you have these 2 non-

planar graphs that I introduced to you earlier and I claim that these 2 graphs are not planar and 

we did not prove it. Now, we can prove it by using the Euler identity. So, let us prove the first 

one, 𝐾5 is not planar. So, 𝐾5 case is very easy; 𝐾5 has 5 vertices and 10 edges.  

So, in our Euler identity, n = 5, m = 10 and now 3n - 6 = 3 × 5 - 6 = 15 - 6 = 9 < 10 which is 

the number of edges in the graph. So, since you have more edges than 3n - 6 the graph is 

definitely not planar by Euler identity, using Euler identity we are able to prove this a number 

of edges bound. So, the graph is immediately not planar, 𝐾5 is not planar. Now, let us try to 

apply the same for 𝐾3,3.  
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So, we have 𝐾3,3 the graph 𝐾3,3 is not planar. So, let us try to use the same idea 𝐾3,3 has 6 

vertices and 9 edges. And what is 3n - 6 = 18 – 6 = 12. But, you know the graph on 6 vertices 

allow 12 edges to be there at most. But we have only 9 edges in the graph 𝐾3,3. So, the identity 

does not tell us whether the graph is planar or not. Because the, the result that planar graph can 

have at most 3n - 6 edges is a one directional result.  

It does not tell that if the number of edges is less the graph is planar, it only tells that the number 

of edges is more than the graph is definitely not planar. So, using this idea, immediately is not 

helping. Directly we cannot use this bound to show whether the graph 𝐾3,3 planner or not. Now 

how do you go about proving 𝐾3,3 is not planar. So obviously, a number of edges is not going 

to help you or directly by using this formula. Can you think of something about 𝐾3,3 and how 

you can improve upon this. So, think about this for some time. And then we will look at the 

proof.  
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Here is a different approach. So, you have the graph 𝐾3,3,but the 𝐾3,3 is a bipartite. It is a 

complete bipartite graph. Now, a bipartite graph has no odd length cycles. So, therefore 𝐾3,3 

has no 3 cycles. When we were trying to prove this relation between the number of vertices 

and edges, we use the fact that every face boundary has at least 3 edges. But now, since the 

graph is bipartite, you know that any face boundary must have at least 4 edges.  

So, can we use this idea now, to improve upon the number of edges itself? So, let us take a 

bipartite planar graph, we know that, if it has f faces, then every face boundary has at least 4 

edges and therefore, 4f ≤  ∑ |𝐹𝑖|
𝑓
𝑖=1 ≤ 2m. Because, if you sum over all the cardinalities of 

faces, each face boundary has at least 4, but each edge is counted at most twice.  



So, 4f ≤ 2m. Now, directly using Euler identity, 4 (m-n+2) ≤ 2m. And this tells you that 2m 

≤ 4n – 8. Therefore, m ≤ 2n - 4. Which is to say that any planar bipartite graph we did not use 

it is 𝐾3,3or anything, any planar bipartite graph has at most 2n - 4 edges. So, any planar graph 

has at most 3n - 6 edges, but any planar bipartite graph has at most 2n - 4 edges. Now, this is a 

much improved bound for the number of edges. So, therefore, let us try to use it on 𝐾3,3 
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So, 𝐾3,3 is bipartite and 2n - 4 = 2× 6 - 4 which is 8. But we have 9 edges in 𝐾3,3.Therefore, 

bipartite planner graph cannot have these many edges and this tells you that 𝐾3,3 is not planar. 

So, this way you can use Euler identity in several forms and with more improvements to show 

several results about planarity. So, here is a result that you should remember. We proved one 

theorem in between. As part of proving attempt, we proved another theorem which is that the 

planar bipartite graph has at most 2n - 4 edges. So, keep that also in mind. 

  

 


