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Welcome back. So as you remember in the previous lectures we were looking at generating 

function. And then we studied the ordinary generating function. So we said that we can use the 

ordinary generating function and solve recurrence relations and other questions about counting. 

And now we saw that it was very useful. And then we look at one more example and try to 

solve it using the method that we know. 

Let us say that we are given the following recursion formula. So 𝑎𝑛 = 𝑛𝑎𝑛−1 + 2𝑛, 𝑛 ≥

1 , 𝑎0 = 5. So it is defined in terms of 𝑎𝑛−1 and n. Now, as usual, when we have such a formula 

what we do is we multiply the recurrence relation both sides by 𝑥𝑛, and take the sum. 

∑ 𝑎𝑛𝑥𝑛

𝑛≥1

= 𝑥 ∑ 𝑛𝑎𝑛−1𝑥𝑛−1 + 2𝑥 ∑ 𝑛𝑥𝑛−1

𝑛≥1𝑛≥1

 

𝐴(𝑥) − 5 = 𝑥 ∑ 𝑛𝑎𝑛−1

𝑛≥1

𝑥𝑛−1  +
2𝑥

(1 − 𝑥)2
 

But now the problem is that what do we do with this other term, the first term on the RHS? 



So we have 𝑥 ∑ 𝑛𝑎𝑛−1𝑛≥1 𝑥𝑛−1  and we do not know how to convert this to a nice formula, or 

write in times of A(x). How do you write it in times of A(x). Because of the n sitting there we 

will see that it is not easy to do that. 

So now why it is, why did this not work? So one can show that this really does not work. This 

method does not work to get a generating function because, as one can verify that if you look 

at this 𝑎𝑛 , this 𝑎𝑛 = 𝑛𝑎𝑛−1 + 2𝑛. So every time it is multiplied by n, and therefore you will 

see that the sequence grows faster than n!. 

And because of this one can show that the ordinary generating function will not converge and 

then we will not get a nice function as we did in the previous case. So in that case what we will 

do? So if the function does not converge, we cannot really use the method of generating 

functions to do nice things. So in that case we will do some tricks. So we are going to learn 

something. 
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And one of the more standard way to deal with this kind of thing is to use what is called the 

exponential generating function. So what is the exponential generating function. Given a 

sequence {𝑓𝑛 }, a sequence of real numbers, then the formal power series 𝐹(𝑥) = ∑
𝑓𝑛𝑥𝑛

𝑛!𝑛≥0 . 

This is called the exponential generating function of sequence. 

So what we have done here is that, we know that 𝑓𝑛 is growing  fast. So if 𝑓𝑛 is growing fast, I 

want to make the function to be convergent. So to make the function convergent, the series to 



be convergent what I can do is to divide throughout by n! to make the coefficient of 𝑥𝑛 to be 

small. So if the coefficient of 𝑥𝑛 is small, then one can hope to make it convergent. 

So there is a much better probability of converging. So if 𝑓𝑛 is growing large, close to  n!, one 

can try to do this and then it might work.  Basically n! acts as a normalizing factor, to make 𝑓𝑛 

to be small. 

Now how do you recover 𝑓𝑛? Well, all I need to do is to take the function, whatever we get, 

look at the coefficient of 
𝑥𝑛

𝑛!
 in the series expansion. That will be equal to 𝑓𝑛. 

So even though n! may not be present when we look at the coefficient of 𝑥𝑛, we get something 

but we have to look at the coefficient of 
𝑥𝑛

𝑛!
. So if there is no n! present in the denominator, we 

multiply both sides by n! and then get the denominator to be 
𝑥𝑛

𝑛!
. 

And then we will get the coefficient of that will be precisely the 𝑓𝑛 that we want. So this is 

something that we can do. So one can try to use the same method in the previous example and 

you will see that it will work. 
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So let us look at a slightly different example to begin with. So we have the example 𝑓𝑛 = 1 for 

every n. So we take the constant sequence even though it does not grow fast, I am going to just 

look at this example. 



So I divide by n! everywhere, so I have the exponential generating function for {𝑓𝑛} is 

∑
𝑥𝑛

𝑛!
= 𝑒𝑥

𝑛≥0 .  So this, that is the example I wanted to present to you first. 
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Now, let us take another example. So we have, let us say 𝑎0 = 1,  and 𝑎𝑛+1 = (𝑛 + 1)(𝑎𝑛 −

𝑛 + 1)  for n greater than or equal to 0. Find a closed formula for the generating function for 

the sequence {𝑎𝑛}. 

So one can check the ordinary generating function does not work because we have this n + 1 

multiplying every time, so , the coefficient grows very fast. So we will try to use the exponential 

generating function. Let 𝐴(𝑥) = ∑
𝑎𝑛𝑥𝑛

𝑛!𝑛≥0  be the exponential generating function for the 

sequence {𝑎𝑛},  which is defined by the recursive formula. 

So 𝑎𝑛+1 = (𝑛 + 1)(𝑎𝑛 − 𝑛 + 1) . Take the summation by multiplying with 
𝑥𝑛+1

(𝑛+1)!
 on both 

sides, I will get  

∑
𝑎𝑛+1𝑥𝑛+1 

(𝑛 + 1)!
=  ∑

𝑎𝑛𝑥𝑛+1

𝑛!
− 

∞

0𝑛≥0

 ∑(𝑛 − 1)𝑥𝑛+1 

∞

0
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Now we can write the LHS, the first term 𝑎0 = 1 is missing therefore it is A(x) - 1 we get  

𝐴(𝑥) − 1 = 𝑥𝐴(𝑥) − 𝑥2 ∑
𝑥𝑛−1

(𝑛 − 1)!
+ 𝑥 ∑

𝑥𝑛

𝑛!
 

=  𝑥𝐴(𝑥) − 𝑥2𝑒𝑥 + 𝑥𝑒𝑥 

𝐴(𝑥)(1 − 𝑥) = 1 + 𝑥𝑒𝑥(1 − 𝑥) 

𝐴(𝑥) =
1

1 − 𝑥
+ 𝑥𝑒𝑥 = ∑ 𝑥𝑛 +

∑𝑥𝑛+1

𝑛!
 



 

And the coefficient of  
𝑥𝑛

𝑛!
 in A(x) is  n! +n 

If you want you can go back and verify, whether it is true for the values. I will not go into the 

verification part, you can do it. This is how we can use exponential generating function to deal 

with things. The calculations are exactly the same, only thing is that instead of looking ∑𝑓𝑛𝑥𝑛, 

we are looking at  ∑𝑓𝑛
𝑥𝑛

𝑛!
  , 

(Refer Slide Time: 13:16) 

 

So another example, 𝑎𝑛+1 = 2(𝑛 + 1)𝑎𝑛 + (𝑛 + 1)! ,  n greater than or equal to 0, with the 

initial condition that 𝑎0 = 0. Find a formula for 𝑎𝑛. We have the EGF 𝐴(𝑥) = ∑ 𝑎𝑛
𝑥𝑛

𝑛!𝑛≥0 ,  

where 𝑎𝑛 is the nth term of this, the series, that we have defined recursively. 

So if you look at the exponential generating function, then, you can take  the recursion relation 

and then multiply by 
𝑥𝑛+1

(𝑛+1)!
 on the left side and on the right side you will get as usual the terms 

to be exactly as before  

∑ 𝑎𝑛+1 

𝑥𝑛+1

(𝑛 + 1)!
 = 2 ∑ 𝑎𝑛

𝑥𝑛+1

𝑛!
+ ∑ 𝑥𝑛+1 

𝐴(𝑥) − 0 = 2𝑥𝐴(𝑥) +
𝑥

1 − 𝑥
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𝐴(𝑥) =
𝑥

(1 − 𝑥)(1 − 2𝑥)
=

1

1 − 2𝑥
−

1

1 − 𝑥
 

= ∑ 2𝑛𝑥𝑛 − ∑ 𝑥𝑛

𝑛≥0𝑛≥0

 

 But we want the coefficient of 
𝑥𝑛

𝑛!
  in A(x).  

[
𝑥𝑛

𝑛!
] 𝐴(𝑥) = 𝑛! 2𝑛 − 𝑛! 

𝑆𝑜, 𝑎𝑛 =  𝑛! (2𝑛 − 1) 

So I can I solve questions using EGF very, similar to the one that we did before. 

Now, you can take it as a homework to solve the first question that we started discussing and 

then failed, using the ordinary generating function. Now try to use it with exponential 

generating function. And once you have we can go to look at the meaning of the product. 
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What is the product of generating functions? So how do you define the product? The product 

is of course defined as before but when it is exponential generating function how the product 

can be calculated? We want to see that. Let us look at the product of A(x) and B(x), where 

𝐴(𝑥) = ∑ 𝑎𝑛
𝑥𝑛

𝑛!
    and 𝐵(𝑥) = ∑ 𝑏𝑛

𝑥𝑛

𝑛!
 . Now the product  

𝐴(𝑥)𝐵(𝑥) = ∑ (∑
𝑎𝑘

𝑘!
 .

𝑏𝑛−𝑘

(𝑛 − 𝑘)!

𝑛

𝑘=0

) 𝑥𝑛

𝑛≥0

 

=  ∑ (∑
𝑛!

𝑘! (𝑛 − 𝑘)!
 𝑎𝑘𝑏𝑛−𝑘

𝑛

𝑘=0

)
𝑥𝑛

𝑛!
𝑛≥0

 

=  ∑ (∑ (
𝑛

𝑘
)

𝑛

𝑘=0

𝑎𝑘𝑏𝑛−𝑘)
𝑥𝑛

𝑛!
𝑛≥0

 

= ∑ 𝑐𝑛

𝑥𝑛

𝑛!
𝑛≥0

 =   𝐶(𝑥) 

Now we have to see what this is.  How did this come across? 

Now this is easy to see because the coefficient of 𝑥𝑛 comes from precisely ∑
𝑎𝑘

𝑘!
 .

𝑏𝑛−𝑘

(𝑛−𝑘)!

𝑛
𝑘=0  . 

that you take the coefficient of 𝑥𝑛 in the kth term and (n- k)th term, which is 
𝑏𝑛−𝑘

(𝑛−𝑘)!
. 

And then their product, and sum over all k ranging from 0 to n. So therefore this is clearly our 

usual product of the series. So two series we have multiplied and then we get this. We are just 

writing it in a nice form by converting into this form we want, because we are looking at the 

exponential generating function, we want to have this as our defining term. So coefficient of 

𝑥𝑛

𝑛!
 is what we want. 

Therefore, we are converting into that form and then we will get ∑ (𝑛
𝑘

)𝑛
𝑘=0 𝑎𝑘𝑏𝑛−𝑘. Now we 

want to see how this can make sense so that  𝑐𝑛 is well defined but what is the counting 

sequence for which object? 
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What is the combinatorial meaning of the product of exponential generating functions? We are 

describing the meaning as follows. Let 𝑎𝑛,  count the number of ways to build type A structures, 

and 𝑏𝑛 is the number of ways to build type B structures, on an n element set. 

Now suppose  A(x) and B(x) are the exponential generating functions and 𝑐𝑛 be the number of 

ways to choose a subset that is the T of the set 1  to n, ([n]). So we have the set and we want to 

choose a subset. You should recall that in the previous case when we were looking at the 

ordinary generating function we were not using subsets we were just using sub intervals. 

We, were not changing the orders, we were forced to choose in the particular sequence. If I 

have the set 1 to n, I have to choose from 1 to, let us say, i, i + 1 to, let us say j, j + 1 to etcetera. 



So therefore there is a difference here, we are choosing a subset of 1 to n. So it can be any 

arbitrary subset. 

So the number of ways of choosing a subset T, and then build a type A structure on this set T. 

Now once you do this then you build a type B structure on the complement of this set. And 

then, so let me try to put a nice figure. So we will see this later but this figure might be very 

instructive to see. So how do I draw this? 

So what I want to do is that, I want to choose some subset of this, then I want to put a type A 

structure on it. So I am choosing some subset, and on this set I am going to put a type A 

structure on it. Then I take the complement, and on the complement I am going to put a B type 

structure. So given the set of n elements I choose a subset T, put a structure of type A on the 

set, then take the complement, and on this set I put a type B structure. 

Now if  𝑐𝑛 is the number of ways of doing this, then the claim is that C(x) is A(x).B(x), and 

this coefficient of 𝑥𝑛 in this product count the number of ways of doing this. 

So 𝑎𝑛 is the number of ways to build a type A structures on an element set, 𝑏𝑛 is the number 

of ways to build type B structures on this, and 𝑐𝑛 is the number of ways to first partition the 

set, n element set into two parts like, one subset and its complement, and on the first set I am 

going to build a type A structure, and the second part I am going to put a type B structure. And 

this is counted by 𝑐𝑛, then C(x) = A(x).B(x),. That is that claim. 

So how do you prove this? Well if you look at the, the definition it should be kind of clear 

because what we have here, definition of product. What does (𝑛
𝑘

)? (𝑛
𝑘

) says that I can choose 

some k element subset of the n element set. So that is the number of ways of choosing the k 

element subset. Now once you choose the k element subset, then I have 𝑎𝑘 ways of putting the 

type A structure on the k elements.  

Because there is k element I have exactly 𝑎𝑘 ways of doing that. So once you choose the subset 

I have (𝑛
𝑘

) ways of choosing this. And once you choose the subset, I have 𝑎𝑘 ways of making 

the type A structure, and on the, once you choose the k element set its complement is unique. 

So the n - k element set, I can put a B structure on 𝑏𝑛−𝑘 many ways. That is the number of 

ways of doing this. And, that is what we want.  
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Here is an example. A group of  n students want to form  three clubs. So A, B, C are the clubs 

and each student must be in exactly one of the clubs. The club A must have an even number of 

members. I mean it could be 0, nobody can be there also. And club B must have an odd number 

of members. 

On the other hand, club C says that I do not care whether I have odd numbers or even numbers, 

but there should be a president for the club. I mean we want clubs with presidents. So the club 

C requires that, by mandate, that there should be a president. Now compute, let us say 𝑑𝑛, 

which is the total number of ways to do this. 
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So given  a set S of people, they can form a club A, if cardinality of S is even. So only when 

cardinality of S is even, we can form a club and there is precisely one way to do it. They know 

they all form a club from that. So once you say that these are the guys going to the club, if it is 

exactly even number of members they form the club A. 

If cardinality of S is odd we cannot form a club of type A. So therefore the exponential 

generating function 𝐴(𝑥) = ∑
𝑥2𝑛

2𝑛!𝑛≥0 . Because 𝑥2𝑛 to say that we can only choose an even 

number of people. n can be 0, therefore n greater than or equal to 0. So I can choose 0 guys, 2 

guys, 4 guys etcetera.   

And what is this? I can write it as  

𝐴(𝑥) = ∑
𝑥2𝑛

2𝑛!
𝑛≥0

.  

=
1

2
(∑

𝑥𝑛

𝑛!
 +  ∑(−1)𝑛

𝑥𝑛

𝑛!
𝑛≥0𝑛≥0

) 

=  
1

2
(𝑒𝑥 + 𝑒−𝑥) 

This the generating function for A(x). So we get it immediately from this form,  
𝑥2𝑛

2𝑛!
. 
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So yes, now let us solve for B(x). 



𝐵(𝑥) = ∑
𝑥2𝑛+1

(2𝑛 + 1)!
𝑛≥0

=  
𝑒𝑥 − 𝑒−𝑥

2
  

And C of x is  given by,  

𝐶(𝑥) = ∑ 𝑛 
𝑥𝑛

𝑛!
𝑛≥0

.  

because once you have n people you have to choose one of the president in n possible ways. 

Any one of them can be a president. Therefore, there is a n possible ways to do when you are 

given a set of n guys. So I have 𝐶(𝑥) = ∑ 𝑛 
𝑥𝑛

𝑛!𝑛≥0 = 𝑥 ∑  
𝑥𝑛−1

(𝑛−1)!𝑛≥1  = 𝑥𝑒𝑥  

And so we have all these things like, A(x), B(x) and C(x), and since we are looking at the 

number of ways of choosing a club A, B and C by partitioning into three parts, we can apply 

the product rule. So, 

𝐷(𝑥) = A(x) B(x)C(x)  

=  (
𝑒𝑥 + 𝑒−𝑥

2
 )(

𝑒𝑥 − 𝑒−𝑥

2
 )(𝑥𝑒𝑥) 

So we get the generating function and then we can look at the coefficient of 𝑥𝑛. 
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And for that we do some simplifications,  



𝐷(𝑥) =  (
𝑒𝑥 + 𝑒−𝑥

2
 ) (

𝑒𝑥 − 𝑒−𝑥

2
 ) (𝑥𝑒𝑥) 

=  (
𝑒2𝑥 − 𝑒−2𝑥

4
 ) (𝑥𝑒𝑥) = 𝑥 (

𝑒3𝑥 − 𝑒−𝑥

4
 ) 

=
1

4
(∑

3𝑛𝑥𝑛+1

𝑛!
) −

1

4
(∑

(−1)𝑛𝑥𝑛+1

𝑛!
) 

So the coefficient of  
𝑥𝑛

𝑛!
  is, 

𝑑𝑛 =
𝑛!

4
(

3𝑛−1

(𝑛 − 1)!
− 

(−1)𝑛−1

(𝑛 − 1)!
) =

𝑛

4
(3𝑛−1 + (−1)𝑛) 

,for n a greater than or equal to 1. So this is a nice way to do it. 

 


