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In the previous lecture, we looked at ordinary generating functions and then one example. Now, 

we will look at a couple of more examples before going into further topics. So, let us start with 

another example. 
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Here is our example 2. Again we have our five devotees of the blue goddess. What they do is 

that, they change their strategy of conversation. They started converting in a different way. 

What they do is that, on the first day they will preach to one recruit, who joins. So, the first 



morning right after the religion was formed, the first morning, they will convert only one 

person. 

Now, the, new converts follow the same strategy, once they join the religion, the next morning, 

they will preach to one person, then recruit. Then every devotee from his second morning 

onwards recruits nine others, so they have increased the base. In the first day, it will be relaxed, 

but then, next day onwards, they are more energetic and they are going to convert 9 people 

every day morning. 

Once converted all the converted people remain the devotees, that nobody changes their 

opinion. Now, in this case, how many devotees will be there after the n’th day. So, a slight 

modification from the previous question. We started with our 5 devotees of blue goddess who 

wears blue t shirts, and then they convert people in the following way. 

First day, they will preach to only one person, second day onwards they will introduce 9 more 

persons and who ever was converted their next morning, the first day they will convert one 

person and then the next morning onwards they will convert 9 others. Well, similar to the 

previous question, we can form a recurrence relation and then try to solve it. Using the 

generality functions, let us see how we can form the recurrence relation. I recommend that you 

really try to do it on your own, then once you give it a try, come back here and continue. 
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So, we have the following observation that if 𝑑𝑛 we denote the devotees after n days, then 𝑑0 =

5, at the 0’th day, when the religion is formed, there are 5 devotees. And at the end of the first 



day you have 10 devotees because they converted, each of them converted 1 more person, so I 

have 10 person. 

Now, nobody is going to give up the religion after they join it. Therefore, at the end of day 1 

you have 10. Then what is the recursive formula. So, we have 𝑑0 =  5 𝑎𝑛𝑑 𝑑1 =  10. Now, can 

you find out a formula for 𝑑𝑛, where n is greater than equal to 2. So, if you think about it, you 

will see that. So, the first day they converts 5, but second day onwards each of them converts 

9 others. 

(Refer Slide Time: 04:22) 

 

So whoever is present there they will all convert 1 person at least. So everybody converts 1. 

So, all the 𝑑𝑛−1 people will convert at least one person. So, at the end of the day you have 

2𝑑𝑛−1  members. 

Now, if each person who was there in the previous, so this is not the first day for people, they 

will all converts 8 more people, because in total they convert 9, so 1 is already counted. So, 

there they convert eight more people. So, people who are the second day which is 𝑑𝑛−2, each 

of them, where 𝑑𝑛−2 of them are having the second day now, so they will all convert 9 people. 

 So, we have 𝑑𝑛 = 2𝑑𝑛−1 + 8𝑑𝑛−2, because whoever is there then everybody converts one 

persons and then each of the persons who is having the second day or more, all those people 

will convert 8 more others. 

Thus, we have the recurrence relation. Now, we can use the method of generating functions. 

So, how do you do that, for that we multiply by 𝑥𝑛 on both sides of the recursion relation and 

then some overall n greater than or equal to 2. So,   



∑ 𝑑𝑛 𝑥
𝑛 

𝑛≥2

=  2 ∑ 𝑑𝑛−1 𝑥
𝑛 

𝑛≥2

+  8 ∑ 𝑑𝑛−2 𝑥
𝑛 

𝑛≥2

 

Why n greater than or equal to 2 because the recursion formula holds for n greater than or 

equal to 2 and we have the term 𝑑𝑛−2.  So, the index only starts from zero. So, I have n is 

greater than or equal to 2. Now, if I denote by 𝐷(𝑥) = ∑𝑑𝑛𝑥𝑛.Then the first two terms is  

mean 𝑑1𝑥 and  𝑑0. 

So, we subtract that to get the LHS, 𝐷(𝑥) − 10𝑥 − 5. On the other hand, on the right side, you 

have 2 ∑ 𝑑𝑛−1 𝑥
𝑛 𝑛≥2 . I take x outside I get 2𝑥(𝐷(𝑥) − 5)  because the first term is missing 

from the summation. And then you have, from the last one you have you can take 𝑥2 outside 

you will get 8𝑥2𝐷(𝑥).   

Therefore I get the formula now,  

𝐷(𝑥) − 10𝑥 − 5 =  2𝑥(𝐷(𝑥) − 5) +  8𝑥2𝐷(𝑥) 

simplify this for D(x) I get,  

𝐷(𝑥)(1 − 2𝑥 − 8𝑥2) = 5 

𝐷(𝑥) =
5

1 − 2𝑥 − 8𝑥2
=

5

(1 − 2𝑥)(1 − 4𝑥)
 

 So, this will be written as a method of partial fractions, we can write it as 

𝐷(𝑥) =
𝛼

1 − 2𝑥
+

𝛽

1 − 4𝑥
 

 So, we solve for alpha and beta we get 
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𝛼 =
5

3
 , 𝛽 =

10

3
 

Now,  

𝐷(𝑥) =
5

3

1

1 − 2𝑥
+

10

3

1

1 − 4𝑥
 

Now, this is now easy because coefficient of  𝑥𝑛 in D(x), can be find out by expanding these 

two functions to series. So, I will get this as  

𝑑𝑛 = [𝑥𝑛]𝐷(𝑥) =
5

3
(−1)𝑛2𝑛 +

10

3
4𝑛 

So, I get a close formula for dn. So now, we see how powerful this method is. 



(Refer Slide Time: 10:53) 

 

We look at another famous sequence, which we call the Hemachandra sequence. So, 

Hemachandra sequence if you remember, is also called the Fibonacci Hemachandra or 

Hemachandra Fibonacci sequence and this sequence satisfies the recurrence relation as we 

already know is ℎ𝑛 = ℎ𝑛−1 + ℎ𝑛−2, 𝑛 ≥ 2. So, starting conditions, initial condition can be 

ℎ0 = 1, ℎ1 = 1 , and then you can continue.  

I mean you have a slightly different way of defining the initial conditions because sometimes 

people start by 1, then 2, and then etcetera, 1,1, 2 etcetera, sometimes it will start with 0, 1 

etcetera. So, this will make only a very minor difference, because we know just shifting in the 

index. So, we do not have to worry about that, we will assume that this is our current initial 

condition. So ℎ𝑛 = ℎ𝑛−1 + ℎ𝑛−2, 𝑛 ≥ 2 ,  ℎ0 = 1, ℎ1 = 1. 
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Now, let us compute this H(x) in a slightly different manner. We know that  𝐻(𝑥) =

∑ ℎ𝑛𝑥𝑛
𝑛≥0 . Now, let us look at the coefficient of 𝑥𝑛 in 𝐻(𝑥) −  𝑥𝐻(𝑥) −  𝑥2𝐻(𝑥). Now, why 

do I look at this because ℎ𝑛 = ℎ𝑛−1 + ℎ𝑛−2, so, that identity is there. 

Now, if I look at coefficient of 𝑥𝑛 in  H(x), that is basically ℎ𝑛 then coefficient of 𝑥𝑛 in  xH(x) 

is basically ℎ𝑛−1 and coefficient of 𝑥𝑛 in 𝑥2𝐻(𝑥) is ℎ𝑛−2 . So, this is clear because 𝑥2 shift the 

terms by 2.  

Now, ℎ𝑛 − ℎ𝑛−1 −  ℎ𝑛−2 = 0, because for n greater than or equal to 2, we have this identity 

satisfied by the Hemachandra sequence. So 

[𝑥𝑛](𝐻(𝑥) −  𝑥𝐻(𝑥) −  𝑥2𝐻(𝑥)) = 0 , 𝑛 ≥ 2 

Now, for n is equal to zero, what is the coefficient of x raised to 0? Coefficient of x raised to 0 

in this is precisely ℎ0. 

[𝑥0](𝐻(𝑥) −  𝑥𝐻(𝑥) −  𝑥2𝐻(𝑥)) = ℎ0 =  0 

Now, coefficient of x raised to 1 in the same is that, 

[𝑥1](𝐻(𝑥) −  𝑥𝐻(𝑥) −  𝑥2𝐻(𝑥)) = ℎ1 − ℎ0 =  1 

So therefore, we have the complete information about the difference of this power series. So,  

𝐻(𝑥) −  𝑥𝐻(𝑥) −  𝑥2𝐻(𝑥) = 𝑥 



So the equation written in x which is with coefficient 0 for whenever the power of x is at least 

2, coefficient 0 whenever the power is 0, and coefficient 1 when the power is 1, so that is the 

polynomial x. So, therefore, we get this difference of the formal power series, these three is 

precisely x. So, now I get a formula  

𝐻(𝑥) =
𝑥

1 − 𝑥 − 𝑥2
=

𝑥

(1 − 𝛼𝑥)(1 − 𝛽𝑥)
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We get 𝛼 =
1+√5

2
 , 𝛽 =

1−√5

2
 

So, we can immediately get it. And the roots alpha and beta, and once you have this, we use 

the method of partial fractions. So, once you write down, you can show that this reduces to the 

following, I can write it as. So, this computation now is routine. So, therefore, I leave it to you, 

I do not want to spend time on working out this minor details. 

So, you work with this and if you have any questions, get back to me. So 

𝑥

(1 − 𝛼𝑥)(1 − 𝛽𝑥)
=

1

𝛼 − 𝛽
 ( 

1

1 − 𝛼𝑥
−

1

1 − 𝛽𝑥
 ) 
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So, if you solve it like this, then  

1

𝛼−𝛽
 ( 

1

1−𝛼𝑥
−

1

1−𝛽𝑥
 ) =

1

√5
 (

1

1−𝛼𝑥
−

1

1−𝛽𝑥
)  

so now we need to just find out the coefficient of 𝑥𝑛, in this  

[𝑥𝑛]
1

√5
 (

1

1 − 𝛼𝑥
−

1

1 − 𝛽𝑥
) =

1

√5
(𝛼𝑛 − 𝛽𝑛) 

So,  

ℎ𝑛 =
1

√5
[(

1+√5

2
)

𝑛

−  (
1−√5

2
)

𝑛

]  

Now, it may be interesting to see that this is always an integer, because ℎ𝑛 is our Fibonacci or 

Hemachandra sequence. 
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I will give you a couple of homework questions. Use generating functions to solve the 

following. We have the following situation. So, there is a nice pond or a lake, let us say it is a 

magic lake. So, this magic lake has this property if you throw let us say 50 lotus flowers to the 

lake, then every day, the number of flowers grows by 4 times at the midnight. 

So, every night the number of flowers multiplies by 4. So, if there are 50, then next morning, 

you will see 200 of them. So, in the morning 100 flowers will be picked for sale. So, people 

use this that you put 50, or whatever, let us say some flowers and next day you have 4 times, 

so, you take some of them and then sell it.  

So, if I start with 50, then the first day I get, first night I will get 200, then I pick up 100 and 

sell it, but then the remaining 100 will be there that will multiply by 4 times, so 4 into 400 then 

I again take 100, you have remaining 300 and then that is this way I keep on doing. Now, after 

30 days, how many flowers will be there in the lake and how many will be there after n days 

in general. So, find the recursion formula and solve it, using the method of generating functions. 
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Second question ask you to solve the recursion relation 𝑏𝑛+2 = 3. 𝑏𝑛+1 − 2. 𝑏𝑛. Now, the initial 

conditions are assumed to be 𝑏0 = 1, 𝑏1 = 1. Now, again use this information find the 

generating function  B(x) which is the generating function for the sequence {𝑏𝑛}. And using 

this deduce an explicit formula for 𝑏𝑛. From the generating function, we want to find a close 

formula for 𝑏𝑛. 
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That question ask you to do the following, given a sequence let us say {𝑓𝑛}𝑛≥0 and this 𝑓𝑛  

satisfy the following recurrence relation 

(
𝑘 + 2

2
) =  ∑ 𝑓𝑖𝑓𝑘−𝑖, 𝑘 ≥ 1

𝑘

𝑖=0

 



Now, find  F(x) the generating function for the sequence 𝑓𝑛 and then use it to  deduce a formula 

for 𝑓𝑛 and then compute 𝑓4 using this identity, so this is what we want. 
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Now, we look at the combinatorial meaning of the product of generating functions. So, suppose 

you are given two sequences, let us say 𝑎𝑛 and 𝑏𝑛. Which represent the number of ways, let us 

say two different combinatorial structures on sets can be built on an n-element set. So, given 

an n-element set I want to make let us say permutation. 

Similarly, given n as a parameter, I want to say what is the number of triangulations an n-sided 

polygon can have. So, these kinds of things can be represented by sequences 𝑎𝑛 and 𝑏𝑛.. Now, 

we define 𝑐𝑛 to be the total number of ways. So, given an n-element set, let me take, so let us 

say that you have this set 1 to n, there is an ordering we fix. And then on this set let us say 1 to 

n, what I am going to do is that I want to first build a structure of this type T. Let us say we 

want permutation. 

So, I want to make permutations on set, let us say 1, 2, i for some i. Then I want to make type 

B structure which is in our example, this was we were looking at what the triangulations of the 

polygon.  I want to count the polygons and the number of such triangulation. I want to make 

triangulation of a polygon which can be made out of i +1 to n or like I want to put a structure 

on the set T is equal to {i +1,…, n}. 

So, we have two types of structures, let us say type A and type B, so type A such as, on an n-

element that I have 𝑎𝑛 of them, and type B such as there are 𝑏𝑛 of them. Now, 𝑐𝑛 is defined to 

be the total number of ways to first build a structure of Type A on the set 1 to i and then type 



B structure on the set i + 1 to n for some i. So, for each i this can be done. So, from i ranging 

from 0 to n, I can do this. So, I can say that okay, I do not build anything, I put the empty set 

on which if I can do some structure of type A, you do that. 

Then for the remaining all elements I put the structure B or I can say that for one element, 1 I 

will take here remaining 2 to n minus, 2 to n , I will put a structure B again. Similarly, I can 

take the all elements 1 to n and put structure A on that and then in the empty set I can put 

structure B. So, this way I do for every possible i. Now, if A(x) and B(x), represent the 

generating functions for an and 𝑏𝑛. 
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And C(x) represent the generating functions for 𝑐𝑛, then the claim is that C(x) = A(x)B(x), the 

product of the generating functions of a and b will give you the generating functions for 𝑐𝑛. 

And the proof is simple. 

𝑐𝑛 =  ∑ 𝑎𝑖𝑏𝑛−𝑖
𝑛
𝑖=0    

So, what is our definition for 𝑐𝑛, so we said that 𝑐𝑛, is the number of ways to first build a 

structure of type A on 1 to i. So, that is 𝑎𝑖. And then I can put structure of type B on i plus 1 to 

n which is n - i elements are there, so given any n - 1 as the parameter, I have exactly 𝑏𝑛−𝑖 

structure of type B.  

So, therefore, for a fixed i, I have 𝑎𝑖 structures I can make here and 𝑏𝑛−𝑖 possibilities to do on 

the type B structure. So, 𝑎𝑖𝑏𝑛−𝑖 structures I can make. This by the product rule, so that we have 

learned before.   



Now, i can vary, because we said that for each i, we have this option, so I can fix the i to be 

either 0, 1 or up to n. Therefore, i can range from 0 to n, and then each one is separate, so they 

are disjoint sets, so I can do the sum. So, I can ∑ 𝑎𝑖𝑏𝑛−𝑖
𝑛
𝑖=0 , and that is precisely the number of 

ways to make the C type structure. So, that is precisely 𝑐𝑛. 

But then that is the definition of the product of the generating functions, we said that  

𝐴(𝑥)𝐵(𝑥) =  ∑  (∑ 𝑎𝑖𝑏𝑛−𝑖 ) 𝑥𝑛

𝑛

𝑖=0𝑛≥0

 

This is the generative function of the product, but then what is this, this is precisely 𝑐𝑛.  

So, therefore, I get the proof that C(x) = A(x)B(x). So, this is a way to interpret what happens 

when you take the product of two generating functions. And if the generating functions are 

representing counting sequences for structures. There could be other ways to interpret this, but 

this is one way that we want to do, this is a standard way to do it. 
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Now, we can now use this to solve problems. Here is an example. There is a short course on 

let us say combinatorial algorithms, which is offered with the duration of let us say n days. So, 

there is an n day course, like 30 day course or 20 day course or 50 day course, something like 

that. There is a short course on combinatorial algorithms offered and it has duration of n days. 

Now, the instructor decides, okay the first k days will be basic combinatorics, the remaining 

days will be algorithms. Now, the n days are split into two, first k days will be basic 

combinatorics because we need to learn combinatorics to be able to use in the combinatorial 



algorithm, the first k days will be combinatorics remaining will be algorithms. Now, one day 

in the first k will be non-instructional. 

So, out of the k days one day I will say I will not teach on one day. That is 1 day is holiday that 

is decided, then 2 days in the second part will be also reserved for labs, because without doing 

labs we do not want to finish the board. So, therefore, we will say 2 days will be labs. Now, 

the question is that how many ways one can plan this course. So, because k can vary, and the 

choice of the holiday can also vary. So, therefore, we need to figure out this. 
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So, first we note that, since we need to have at least 1 day as holiday, k must be at least 1 

because if there is no day, I mean k cannot be 0, because if there is no day, I cannot choose one 

day as a holiday for the first part. So, k must be at least 1 but it cannot be more than n - 2 

because if there is n days semester, 2 days must be reserved for the holidays in the second part. 

So, because we need at least 2 days there, it cannot be less than 2 days. 

But apart from that there is no restrictions, so I can have k between 1 and n - 2. Now, let us 

define 𝑐𝑛 to be the number of ways the course can be planned. So, what is 𝑐𝑛, 𝑐𝑛 is precisely 

the number of ways to first split, the n days into two parts, like 1 to k and k + 1 to n. Then 

choose 1 holiday for the first part then 2 holidays for the second part. And once you do that, 

your course is already planned. 

So for not holidays, 2 days for the labs. we have clearly 𝑐𝑛 as splitting into k and n - k. And 

then from the k, I need to choose 1 day and so there is (𝑘
1
) possibilities are there. So, the choice 

of one holiday for the first part of the course will be k choose 1 which is equal to k. And then 



the remaining n - k days are there for the second part and 2 days I need to do fix it for lab. So, 

2 days I get  (𝑛−𝑘
2

) possible ways.   

So, this is a number of ways to choose 2 days out of the n - k days. So, 𝑘(𝑛−𝑘
2

), this is the 

number of ways to design the course. We know if you how exactly k days for the first part and 

n - k for the second part. Now, k can vary from 1 to n minus 2. So therefore, I can sum over all 

these possibilities,  𝑐𝑛 = ∑ 𝑘(𝑛−𝑘
2 )𝑛−2

𝑘=1𝑛 .  


