
Combinatorics 

Professor Doctor Narayanan N 

Department of Mathematics 

Indian Institute of Technology, Madras 

Application of Ordinary generating functions 

(Refer Slide Time: 00:14) 

 

So, the associated prominent structure, because when we talk about this series, the series 

corresponding to the counting sequences of objects, combinatorial objects, then we have to also 

give some meaning to what happened to the sum what happened to the product etcetera. So, 

we will do that in soon enough, but for the time being, so, we have this as a sum and then 

similarly, we define the product. 

So, the product of two generating functions F and G is  

(𝐹. 𝐺)(𝑥) = ∑(

𝑛≥0

∑ 𝑓𝑖𝑔𝑛−𝑖)𝑥𝑛

𝑛

𝑖=0

 

So, the coefficient of 𝑥𝑛 is ∑ 𝑓𝑖𝑔𝑛−𝑖
𝑛
𝑖=0 . Now, if you think about it, it will be kind of clear, 

because if you take the product of this infinite series, one can see why this should be the 

coefficient. So, let us see why. 
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Let us say that we are multiplying these two series, but now, since we are multiplying series 

which are like kind of extensions of polynomials, we have only non-negative powers. 

Exponents are non-negative. If I have a non-negative exponent, When I take the product, the 

exponent can only increase it cannot decrease. 

So, therefore if I am going to look at the coefficient of 𝑥𝑛 for fixed at 𝑛. I never have to look 

at terms whose exponent is going to be larger than 𝑛 because, it is never going to contribute to 

the coefficient of 𝑥𝑛 in the product. So, what we can do is to just look at what are the terms 

whose degrees less than or equal to 𝑛. So, we have the first 𝑛 + 1 terms which is 𝑓0 +

 𝑓1𝑥, + ⋯ +𝑓𝑛𝑥𝑛  these are the terms where the degree is less than or equal to n.  

And then similarly, the second series again the degree is less than or equal to n. So, I have 

𝑔𝑛𝑥𝑛, 𝑔𝑛−1𝑥𝑛, … , 𝑔0 x and these are the n terms. Now, when we take the product, of course, 

we are going to multiply each term with each of the other term in the second sum, second series. 

So, we are going to look at in which cases, we will get 𝑥𝑛  from this product. 

So, we can clearly see that if I take 𝑥𝑘  from one of these terms. Let us say I take 𝑓𝑘𝑥𝑘. 

Something like 𝑓𝑘𝑥𝑘  I take then since I have 𝑥𝑘to make it 𝑥𝑛, I have to take 𝑥𝑛−𝑘 and the only 

term that I can multiply it with is in the second series, which is 𝑔𝑛−𝑘𝑥𝑛−𝑘. 

So, now, we can see why the previous one makes sense. So, if I have 𝑓0 then I have to take 𝑔𝑛 

because I need 𝑥𝑛, if I take 𝑓1, I have to take the 𝑔𝑛−1 because I have to get 𝑥. 𝑥𝑛−1  which will 

be 𝑥𝑛. Similarly, I have to take 𝑓𝑛𝑥𝑛 and 𝑔0 because the degree must be equal to 𝑥𝑛. 



So, therefore, I have this 𝑛 + 1 terms in the sum which are going to be ∑ 𝑓𝑖𝑔𝑛−𝑖
𝑛
𝑖=0 . So, these 

are the n plus 1 terms and their sum is going to give me the coefficient of 𝑥𝑛 in the products 

and that is what we have written. So, that is our product of formal power series. Of course, we 

can extend this to more number, you can just take the thing and do it easily. 
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Now, as we mentioned the formal power series has a ring structure. So, the k from which we 

take the coefficient can be a ring of coefficients. Now the ring of coefficients we usually 

consider it to be a field because it will give better nice property for us. And for most of the 

purposes we will assume that it contains  ℚ. 

So, we will take only ℚ, ℝ, or ℂ. When it does not contain ℚ, we have to assume some other 

or we are looking at other type of fields, we have to be more careful that is it, we will not go 



into details. Now, we denote by 𝕂[[𝑥]], the ring of formal power series because 𝕂[𝑥] we use 

to denote the polynomial ring over 𝕂.  

So, 𝕂 is a field, 𝕂[𝑥]is usually used to denote the one variable polynomial ring over the field 

𝕂. Now, what is this ring of formal power series? So, as we know the power series is in one-

to-one correspondence with an infinite sequence. So, basically a power series is a sequence of 

elements from 𝕂 itself. So, therefore, what we are going to look at is the infinite sequence 𝕂ℕ, 

which is the functions from ℕ to 𝕂.  

So, 𝕂ℕ is the set of all functions from ℕ to 𝕂 and this is precisely what we are talking about 

when we say  𝕂 double bracket x, 𝕂[[𝑥]]. Now, to represent this what we are going to do is to 

this take the infinite sequence we are going to write it as ∑ 𝑓𝑛𝑥𝑛
𝑛≥0 . This is only a way to 

represent what we really want to work with this.  

So, this is what we are going to really work with. This is basically the function from ℕ to 𝕂 

and likewise, given any such infinite sequence, we associate the series  and then this series will 

give you the variable x and therefore, it will give you the ring of formal power series. So, what 

we are working with is the infinite sequences of 𝕂.  

Now, so as we mentioned before the sum and product of this infinity sequences or the ring 

elements is as before ∑ 𝑓𝑛𝑥𝑛
𝑛≥0 +  ∑ 𝑔𝑛𝑥𝑛

𝑛≥0 = ∑ (𝑓𝑛 + 𝑔𝑛)𝑥𝑛
𝑛≥0  

and product of these two is (∑ 𝑓𝑛𝑥𝑛
𝑛≥0 ) × ( ∑ 𝑔𝑛𝑥𝑛)𝑛≥0 = ∑ (∑ 𝑓𝑘𝑔𝑛−𝑘 )𝑥𝑛𝑛

𝑘=0𝑛≥0 .  

Now, one thing to note is that the usual analytical properties like exponentiation, logarithm all 

these can be extended to the formal power series ring also, whenever it makes sense. We will 

not go into the details of this at the moment for advanced courses we can think about this. 

Then another point I want to note is that, suppose you look at the field element. So, some 

element in 𝕂, a is an element in the field 𝕂. Now, suppose I represent this field element as 

again an infinite sequence. So, for example, I can represent this as (a,0,0,…), the first element 

is a and everything else is zero. So, then I will get the constant because first term is the x raised 

to zero which is constant and then all the other powers of x has coefficient 0.  

Therefore, I get the constant a. So, if I represent ‘a’ as this infinite sequence, where every other 

term other than the first term is zero, then I can see that, the polynomial ring 𝕂[𝑥] is contained 

in the ring of formal power series 𝕂[[𝑥]], because we can just associate now the polynomial 



ring. So, a polynomial ring, we have a finite terms. So, this finite set what we do after the 

remaining we can put zeros to make an infinite sequence. 

And then these vectors can be infinite vectors now, and therefore, we can see that they are 

sitting inside the larger formal power series ring and if you just look at the addition and scalar 

multiplication. So, I can define now, the scalar multiplication as multiplication by the field 

element where the field element is represented by this sequence (a,0, 0,…). So, I have the 

corresponding series, summation over all things a plus everything else is 0. 

So, then I can define the product of these two, power series and this is the product by the field 

element and this will be the scalar multiplication. But now, I have the scalar multiplication and 

the sum one can show that there is a vector space structure over 𝕂 for the power series ring and 

then once you extend it with the product, it will loose some nice properties and it will become 

just adding. So, well we will not discuss any of this further. So, let us try to see how to use 

these things in combinatorics. 
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So, a final word that we can define other operations like derivative and all, so, how do we 

define the derivative. So, the formal derivative of the formal power series. Again keep in mind 

that we are looking at formal derivative not the actual derivative, we will not worry about 

whether it is continuous or like whether we can differentiate or differentiable etcetera when we 

try to look at this kind of thing. 

So, therefore, we will define the derivative the usual way without worrying about the analytical 

property. So, 
𝑑

𝑑𝑥
(∑ 𝑓𝑛𝑥𝑛

𝑛≥0 ) =  ∑ 𝑛𝑓𝑛𝑥𝑛−1
𝑛≥1  , which is the usual term by term derivatives of 

the power series. So, this we define here also but we say it is a formal derivative.  

So as an example, to the things that we learned so far, I am going to prove the following result: 

∑(𝑛 + 1)𝑥𝑛 =  
1

(1 − 𝑥)2

𝑛≥0 

 

 Now, I am going to give three different proofs for this. So, we will use three different methods 

to do this. First, let us use the thing that we just learned immediately before, that is the 

derivative. So, I know that the derivative 
𝑑

𝑑𝑥
(

1

1−𝑥
) =

1

(1−𝑥)2  is whole square.  

So, I know that  ∑ 𝑥𝑛
𝑛≥0 =

1

1−𝑥
 .  Now, let us take derivative on the left as well as on the right-

hand side. We get, ∑ 𝑛𝑥𝑛−1 = 𝑛≥1 ∑ (𝑛 + 1)𝑥𝑛 𝑛≥0 =
1

(1−𝑥)2 

 

So this is the first proof. Now, let us look at another way to prove this. 
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So, we have defined the product of the analytic function before. Let us try to use that. So, I 

know that 
1

(1−𝑥)2 =  
1

1−𝑥
.

1

1−𝑥
.  

We know one by 1 minus x is the series summation x raised to n (
1

1−𝑥
=  ∑ 𝑥𝑛

𝑛≥0 ) with the 

generative function let us say A(x). And similarly, I say B(x) is the same series ∑ 𝑥𝑛
𝑛≥0 . 

So, the product of these two series, is by definition, 

𝐴(𝑥). 𝐵(𝑥) =  ∑ 𝑥𝑛

𝑛≥0

  . ∑ 𝑥𝑛

𝑛≥0

=  ∑(∑ 𝑎𝑖𝑏𝑛−𝑖)

𝑛

𝑖=0

𝑥𝑛

𝑛≥0

=  ∑(𝑛 + 1)𝑥𝑛

𝑛≥0

 

 So, what is the coefficient of 𝑥𝑛 here? Well, 𝑎𝑖 is coming from the constant sequence 𝑥𝑛, when 

the coefficients are all one. So, therefore, 𝑎𝑖 is one. And similarly, 𝑏𝑛−𝑖 is also one. So therefore, 

𝑎𝑖𝑏𝑛−𝑖 is one into one which is one. 

So, I am going to add i equal to 0 to n everything is one. So, how many terms are here? There 

are exactly n + 1 terms. So, n + 1 ones if I add I will get n + 1. So, the coefficient of 𝑥𝑛  is n + 

1 so, I get ∑ (𝑛 + 1)𝑥𝑛
𝑛≥0 . This is the product and that product is precisely one by 

1

(1−𝑥)2
 

because it is A(x) B(x). 

Now, I am going to give you the third proof and this time we want to use the generalized 

binomial function. So, 
1

(1−𝑥)2 = (1 − 𝑥)−2 =  ∑  (−2
𝑛

)(−𝑥)𝑛  𝑛≥0  



  = ∑ (−1)𝑛(𝑛 + 1)(−𝑥)𝑛
𝑛≥0 , Since ( (−2

𝑛
) =

−2×−3×…×−(𝑛+1)

𝑛!
=

(−1)𝑛(𝑛+1)!

𝑛!
 

  =  ∑ (𝑛 + 1)𝑥𝑛
𝑛≥0  
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So, these are three different proofs of the same identity which we proved using the techniques 

that we have learned. 
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Now, we want to look at some applications of these formal power series that we have learned. 

And one of the places where we can use is to use this to solve recursion relations or recursive 



equations. So, what is a recursive relation? So let us say we have some unknown quantities say 

𝑎1, 𝑎2 etcetera it is a sequence of unknown numbers. 

 Now, when we say 𝑎𝑛 is given as a recursive formula, it is an expression of the following form 

that 𝑎𝑛 is written as a function of the previous values of 𝑎𝑖 which is 𝑎0, 𝑎1, …, 𝑎𝑛−1 and 

possibly also of n. So, 𝑎𝑛 can be written as a function of 𝑛 and the values that has appeared 

before and you may not have to use all of them. Maybe some of them is fine. I can write 𝑎𝑛 as 

a function of n-1, 𝑎𝑛−1, or I can just write as a function of n and 𝑎𝑛−1 and 𝑎𝑛−2. 

So, these are posibble, so if  I can write 𝑎𝑛 as a function of these previous values, then we say 

it is a recursive formula for 𝑎𝑛. We usually will also be given some initial condition, because 

when we have 𝑎𝑛 is written as, in terms of the previous terms, we need to see what are these 

unknowns in the at least the beginning few terms.  

Like for example, what is 𝑎0, if I do not know 𝑎0 or 𝑎1 whatever, then when I go back, I will 

have a trouble because once I reach 𝑎0, 𝑎𝑛 in terms of let us say 𝑎0 and something. If I do not 

know what is 𝑎0, I cannot do anything. So, therefore, some initial conditions are basically some 

non-recursive expressions for 𝑎0 etcetera. So, 𝑎0 and whatever is required, some few terms in 

the beginning will be given to you.  

And this completes the recursion formula, and then we can use the recursion to compute the 

later ones. So, that is the idea of recursion. Now, the problem with recursive formula is that, if 

I want to find out the 10,000 step, or like 2549th term, then I have to compute all the previous 

value up to 2548. So, all the previous terms I might have to compute before I can find out what 

is this 𝑎𝑛.  

Now, this may be an unnecessarily work, because often it is the case that we only need to know 

what is the value of let us say, 𝑎10000 after 10,000 steps, what has happened, that is what we 

want to know. But why are we finding out all the previous 9999 values, we do not need. So, to 

do away with this kind of work, one can try to use to put this recursion formula and then try to 

come up with a nice function to represent 𝑎𝑛.  

And for that, these methods that we are going to learn from the power series, formal power 

series will be very useful. So, let us see some examples with some definition. 
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So, we want to solve recurrence relation. So, the first problem we want to look at is the 

following. So, let us say that there are five people start a new religion. So, what they do is that 

they start wearing blue T-shirts all the time. And then they said, okay, we believe in the blue 

goddess. Now, what does this goddess say that, so she says that all the worshipers must wear 

blue T-shirts, and if they do not do that, they will not get heaven, they will not get entry into 

heaven. 

Now, every day, what the devotees do is that, they spend time to spread the word, they will try 

to convert other people to their religion. So, they will convince others to join them, so let us 

assume that they convinced two others every day, and once they are convinced, they 

immediately join the religion and start wearing the blue T-shirts and the next morning onwards 

they start spreading the religion again. 



But we will also assume that every day one person will stop believing. So, after n days, we 

want to know how many people are there in the religion. So, we want to know only what 

happens after let us say n is equal to 100 or n is equal to 70. Now, after these many days, how 

many people are there in the religion? 

Now, can you form a recursive formula for this from the given information. So, we have given 

all the information required. Now, a nice exercise will be to form yourself a recursive formula. 

So, we can start assuming that 𝑎𝑛 denotes the number of devotees after n days, so then what is 

the recursive formula for 𝑎𝑛? So, you think about this for some time and then continue. 

So, what is given to us is that five people start wearing  T-shirt. So therefore, initially, there are 

five people. So therefore, 𝑎0 = 5. So, this is very clear. Now, since there are exactly five people 

in the first day, they start spreading the religion to 2 others. So, by the evening, they must have 

converted, each of them converted 2, so therefore 10 more people. So, 10 plus 5, which is 15 

people have been converted after the end of the day. 

Now, we know that every day 1 person will stop believing, so therefore, 1 person will lose his 

belief by the end of the day again. So, how many people will be there in the next day morning, 

next morning there will be exactly 14 people. So, this you can see, and then it tells us something 

else. So, we can now form the recursion relation as follows, we know that if there are exactly, 

let us say 𝑎𝑛 people or 𝑎𝑛−1 people at the morning. 
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Then by the end of the day, how many people will be there, each of the 𝑎𝑛 person will convince 

twice that many people, so I will get two times 𝑎𝑛 more believers. So, this will make it 3𝑎𝑛−1 −

1. So, end of the (n-1)th day, I have 3𝑎𝑛−1 − 1 persons. 

Now, the next day morning that is which 𝑖𝑠 𝑎𝑛 =  3𝑎𝑛−1 − 1. So therefore, I have a recursion 

relation for 𝑎𝑛 and the initial condition is that 𝑎0 = 5. So, that is where we start. And as we 

computed 𝑎1 = 14. Now, we can clearly see what is a2 because it is (3 × 14) – 1 = 41. 

And then therefore, we have the counting sequence, associated counting sequence the number 

of devotees after n days is {𝑎𝑛} = { 5, 14, 41, … }. So, we have the counting sequence. So, in 

this case, we can associate a power series. So, I can say now, 5  +14𝑥  + 41𝑥2 + … is my 

corresponding power series. 
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So, I have done that, I have 𝐴(𝑥) = ∑ 𝑎𝑛𝑥𝑛 = 5 + 14𝑥 + 41𝑥2 + ⋯ .𝑛≥0 Now, I want to call 

this with a new name. So, I am going to define that.  

Suppose, we are given a sequence of real numbers 𝑓0, 𝑓1, 𝑓2, etcetera, then the formal power 

series 𝐹(𝑥) = ∑ 𝑓𝑛𝑥𝑛
𝑛≥0  is called the ordinary generating function of the sequence {𝑓𝑛}, where 

𝑛 ≥ 0 

Now, why this is called ordinary, it will be clear when we see that there are other types of 

generating functions. But for the time being, we will just say generating functions for this and 

most of the time, it will be clear, we are looking at ordinary generating functions. So, often we 

can also write OGF, as a initials of O, G, and F to denote ordinary generating function. 



And so, when we say a generating function, in this part of the lecture, what we mean is the 

ordinary generating function. Now, so, ordinary generating function is just the power series 

and if you can write it as a function all the better. So, what our idea is to try to write this power 

series as a function and then if we can succeed, we can use that to do other operations with that.  

So, let us see whether we can write our series 5 + 14𝑥 + 41𝑥2 + ⋯as a nice function. And 

then from that, can we find a formula for 𝑎𝑛. For that, we want to try to use the method of 

generating functions. 
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So, let us do this. So, we have 𝐴(𝑥) = ∑ 𝑎𝑛𝑥𝑛
𝑛≥0 ,  and we have the recursion relation is 𝑎𝑛 =

3𝑎𝑛−1 − 1. We also have the initial condition 𝑎0 = 5. Now, I take this recursion relation, 

multiply with 𝑥𝑛 on both sides of the equation and then add them for every n we get 



 𝑎𝑛𝑥𝑛 = 3𝑎𝑛−1𝑥𝑛 − 𝑥𝑛 

 

Now, what does this give us? So, this gives us, when you sum over all n, I get summation n 

greater than or equal to 1, because I am looking at 𝑎𝑛−1 here. So, because we start from 𝑎0, I 

need to make sure that summation takes care of this index also. 

So, therefore, I sum from n greater than or equal to 1 

∑ 𝑎𝑛𝑥𝑛

𝑛≥1

= 3 ∑ 𝑎𝑛−1𝑥𝑛 − ∑ 𝑥𝑛

𝑛≥1𝑛≥1

 

Now, what is on the LHS, we have summation ∑ 𝑎𝑛𝑥𝑛
𝑛≥1  except the first term, which is n 

equals 0. So, the first term n equals 0 is 𝑎0 = 5, that we know. So, therefore, using that we can 

write this as 𝐴(𝑥) − 5. So, that is our LHS. 

𝐴(𝑥) − 5 = 3𝑥𝐴(𝑥) −
𝑥

1 − 𝑥
 

So, now I have a nice equation with A(x) and x. So, I can now write A(x) in terms of x. So, 

how do I do that, I take all the terms with A(x) to one side and then I get 𝐴(𝑥)(1 − 3𝑥) = 5 −

𝑥

1−𝑥
. Dividing by (1-3x) we get  

𝐴(𝑥) =
5

1 − 3𝑥
−

𝑥

(1 − 3𝑥)(1 − 𝑥)
 

 

Now, what we want to find is 𝑎𝑛, this is what we started with. Now, we know that 𝑎𝑛 is the 

coefficient of 𝑥𝑛 in the expansion of A(x). Whatever is A(x), we expand it as a series look at 

the coefficient of 𝑥𝑛, that is going to be 𝑎𝑛. Because we defined A(x) as ∑𝑎𝑛𝑥𝑛. Now, we 

know 𝐴(𝑥) =
5

1−3𝑥
−

𝑥

(1−3𝑥)(1−𝑥)
. 

Now, if I know the coefficient of 𝑥𝑛 in this each part in the RHS, then their difference is going 

to be the coefficient of  by the rule of addition. So, from the first term, we can immediately get 

the coefficient of x raised to n.  



So, because we know that 
1

1−3𝑥
= ∑3𝑛𝑥𝑛. So, I get 

5

1−3𝑥
= 5∑3𝑛𝑥𝑛. So the coefficient of 𝑥𝑛 

from that is 5.3𝑛. But now, that is only from the first part. Now, from the second part we need 

to find, but the second part is not as a simple form, it is a product of two, such terms.  

But now, how do you do this, we do not know how to work with this. So, therefore, we need 

to do some more work to simplify this. So, the second term, it needs a little more work. So, 

from the first time we get the coefficient 5 into 3 raised to n, we will use it later. So, now, let 

us work with the second term. So, there are several ways to work with the second term and 

what we are going to look at now is called the method of partial fractions. 

(Refer Slide Time: 34:37) 

 

 

So, we write,  
𝑥

(1−3𝑥)(1−𝑥)
=  

𝛼

1−𝑥
+ 

𝛽

1−3𝑥
 



 

Now, I want to solve for alpha and beta, what I do is just multiply both sides by 

(1 − 3𝑥)(1 − 𝑥). So, I get  

𝑥 = 𝛼(1 − 3𝑥) + 𝛽(1 − 𝑥)  

But now, it is a formal polynomial identity and therefore, the coefficients of the corresponding 

terms, the like terms of the same degree terms must be the same, but what is the coefficient of 

the constant term which is a constant term is 0 on the left side. So, therefore, 𝛼 + 𝛽 = 0. 

Similarly, the coefficient of x is 1. So, therefore, 3𝛼 + 𝛽 = −1. 

And once we have this we can immediately solve for alpha and beta, we will get alpha equal 

to -1/2  and beta is equal to 1/2, by just taking these two linear equations. Now, once I have 

this, I can write 

𝑥

(1 − 3𝑥)(1 − 𝑥)
=  

−1/2

1 − 𝑥
+  

1/2

1 − 3𝑥
 

=  
1

2
 ∑ 3𝑛𝑥𝑛 −

𝑛≥0 

 
1

2
 ∑ 𝑥𝑛

𝑛≥0 

 

= ∑
3𝑛 − 1

2
𝑥𝑛

𝑛≥0 

 

So, the coefficient of x raised to n in A(x) is the sum of the first term and second term, which 

is 5.3𝑛 −
3𝑛−1

2
. 

Now, what is this? This is precisely the term 𝑎𝑛, the  n’th term which is the number of devotees 

after n days. So, 𝑎𝑛 =  5.3𝑛 −
3𝑛−1

2
. Now, let us verify whether what we calculated, the formula 

for 𝑎𝑛 is true. So, let us say that n is equal to 0,  I will get 5 into 1 minus 1 minus 1 by 2 which 

is 5. That is 𝑎0 = 5 

 And what is 𝑎1, 𝑎1 is 14, we know, but let us verify, when n is equal to 1, I get 5 into 3 which 

is 15 minus 3 raised to n which is 3 minus 1 which is 2 by 2 which is 1, so 15 minus 1, which 

is 14. Then what is 𝑎2? So, n is equal to 2, I will get 5 into 3 square which is 45 minus 3 square 

which is 9 minus 1, 8 by 2 which is 4, so 45 minus 4, which is 41.  

So, the first 3 terms are same, so hopefully all the terms will be the same. So, now we can see 

why this is such a powerful method because now if you want to find out n is equal to 100, I 



just need to put 3 raised to 100. And then I have the formula 5 into 3 raised to 100 minus 3 

raised to 100 minus 1 by 2. On the other hand, if I wanted to find out using the recursion, I 

need to calculate this for each of the 99 steps before.  

So, this is extremely useful when we want to find out the only the values and solve the 

recurrence relations. We get a nice close formula for the n’th term.   

 

 

 


