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In the previous lecture, we were looking at the principle of inclusion and exclusion. We proved 

that and then we looked at a couple of examples, in particular, we looked at the number of 

derangements using inclusion exclusion, and then also using principle of inclusion and exclusion, 

we calculated the number of surjections from set to another set. So, these are the 2 examples that 

we looked at. 

And so, now, let us look at a couple of more examples. So, what we look today is the first question 

is that, given a multiset 𝑇 = {3. 𝑎, 4. 𝑏, 5. 𝑐}. We want to find the number of 10 combinations of 

this set this means that we want to select 𝑛 element multisets, but of course which are as multi 

subsets of the set. Which means that we cannot have more than 3 copies of 𝑎 in the subset, 4 copies 

of 𝑏 in the subset or 5 copies of 𝑐 in the subject. 

So, we know how to count using the one of the results that we studied earlier is to count the number 

of multi sets that we can make if there is an unlimited supply of each element. So, if the repetition 

or replacement is allowed, then we know how to do that. So, given an unlimited replacement, the 

number of 𝑘 combinations of 𝑛 element set is (𝑘+𝑛−1
𝑘

). Now, what can we do in this case? So, that 



is the question. So, as you might have guessed, we can try to use the principle of inclusion and 

exclusion to deal with the question this time. So how do you do that? 
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So, first we look at 𝑆 as the set of all 10 combinations where infinite replacement is available. So, 

let us denote by 𝑇∗, the multiset where each copies of 𝑎, 𝑏, 𝑎𝑛𝑑 𝑐 are available as many as we 

want. Then, we will define as in a typical example, application of inclusion and exclusion, we 

define 𝐴1 to be those combinations in 𝑆 which uses strictly more than 3 copies of 𝑎 we are only 

allowed to use at most 3. So, the combinations that use more than 3 are going to be the bad ones, 

we want to avoid. 

Similarly, we can define 𝐴2  to be the 10 combinations in 𝑆 that has strictly more than 4 copies of 

𝑏 and similarly, 𝐴3  to be the one with more than 5 copies of 𝑐. So, now, once we have this, we 

know how to calculate this using principle of inclusion and exclusion, we can say that, well you 

take the you know the total number of combinations or the universe which is 𝑆, and then you 

subtract the bad ones and then you get the ones that we want. 

So, what we want is that   𝐴1 ̅̅ ̅̅ ∩  𝐴2 ̅̅ ̅̅ ∩  𝐴3 ̅̅ ̅̅  , which is to say that we are looking at those 10 

combinations, which does not have more than 3 𝑎  and a more than 4 𝑏  or more than  5 𝑐. So, none 

of this must be there. So therefore, we are looking at |𝐴1 ̅̅ ̅̅ ̅ ∩  𝐴2 ̅̅ ̅̅ ∩  𝐴3 ̅̅ ̅̅ |. 



And by inclusion exclusion |𝐴1 ̅̅ ̅̅ ̅ ∩  𝐴2 ̅̅ ̅̅ ∩  𝐴3 ̅̅ ̅̅ | = |𝑆| −  ∑ |𝐴𝑖| +  ∑ |𝐴𝑖 ∩ 𝐴𝑗| − |𝐴1 ∩ 𝐴2 ∩𝑖≠𝑗 
3
1

𝐴3| 

So, now all you have to do is to compute each of these quantities what is cardinality of 𝑆, what is 

cardinality of each of these 𝐴𝑖’s and their intersections. Once we have this, we can use and then 

get this. So, how do we do that here? 
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Well, in the case, what we have 𝑘 = 10 and 𝑛 = 3 for the 10 combinations of the infinite 

replacement situation, we want to count 𝑆. So that is  

 |𝑆| = (𝑘+𝑛−1
𝑘

) =  (10+3−1
10

) = 66.  

Then what is 𝐴1? So 𝐴1 is the 10 combinations, where 𝑎 appears at least 4 times strictly more than 

3. Now, if 𝑎 is appearing 4 times, those are the bad guys. So, from 𝑆 how can we compute this, 

well you look at that 10 combinations where there is at least 4 then you know, what you can do is 

that you can remove these 4 guys. So, remove the 4 and then what you get is going to be a 6 

combination. And then it can of course, contain you know, some, some 𝑎's. But that is okay. 

So, these are in one to one correspondence with each other, because you can also reverse this 

operation, so you have a combination of 𝑇∗ where you are looking at the multi sets using this 

infinite possibility of elements and then you add, add the four 𝑎’s that back, then you are going to 



get 10 combinations where there is at least 4 𝑎’s. So therefore, there is a correspondence and then 

we can instead count the 6 combinations of  𝑇∗.  

But again, counting combinations in 𝑇∗ is very easy like we already have a formula. So, here it is 

a 𝑘 = 6. So, therefore, we have, (6+3−1
6

) = 28. So similarly, you can calculate  |𝐴2| =  (5+3−1
5

) =

21 and (6
4
) = 15. So, these numbers we can calculate. Then what we need, now, we need to find 

out |𝐴1 ∩ 𝐴2|, |𝐴2 ∩ 𝐴3|  etc. So, these computations we need to do. 
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If you take |𝐴1 ∩ 𝐴2|,  what we are saying is that we are looking for the combinations, where you 

have at least 4 𝑎’s and at least 5 𝑏’s. So, those are the bad guys. So, if both of them are happening 

together, then we mean that, 4+5 = 9 elements are basically 𝑎’s and 𝑏’s. So, those let us remove 

as in the previous case, so you will get 1 combinations in 𝑇∗ that we can count and there are in one 

to one  bijection again in the previous, so therefore we get |𝐴1 ∩ 𝐴2| = (1+3−1
1

) = 3. 

 Similarly we can find |𝐴1 ∩ 𝐴3| =  (0+3−1
0

) = 1, and |𝐴2 ∩ 𝐴3| = 0 and |𝐴1 ∩  𝐴2 ∩ 𝐴3| = 0. So, 

we have calculated all these things and therefore, we can directly apply the formula  we get: 

|𝐴1 ̅̅ ̅̅ ̅ ∩  𝐴2 ̅̅ ̅̅ ∩  𝐴3 ̅̅ ̅̅ | = |𝑆| −  ∑ |𝐴𝑖| +  ∑ |𝐴𝑖 ∩ 𝐴𝑗|−|𝐴1 ∩  𝐴2 ∩ 𝐴3|𝑖≠𝑗 
3
1   

         =  66 − (28 + 21 + 15) + (3 + 1 + 0)  − 0 =  6 

 



So, now there are exactly 6, 10 combinations with the property that we are looking at in this set, 

3.𝑎, 4.𝑏 and 5. 𝑐. Now, can you actually find the 6, 10 combinations and list them? So, that is a 

nice question that you can think about. And I will write it as a homework. Now, one more question 

and then we will look at something else. 
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So, here what we want to do is to find the number of integral solutions of the equation 𝑥1 + 𝑥2 +

𝑥3 + 𝑥4 = 18. But then instead of the earlier conditions, where 𝑥𝑖’s greater than or equal to 0 or 

𝑥𝑖’s are greater than equal to 1 both we solved, here what we have is that 1 ≤ 𝑥1 ≤ 5, −2 ≤ 𝑥2 ≤

4, 0 ≤ 𝑥3 ≤ 5 and 3 ≤ 𝑥4 ≤ 9. So, these are the boundary of you know 𝑥𝑖’s, so 𝑥𝑖’s cannot take 

values outside these boundaries. Now, how do you look at something like this? You think for a 

few minutes, you can see that like very simple change of variables will help you to change the 

format to something that we already know, at least partially. So, let us first do the change of 

variables as follows. 

Let 𝑦1 = 𝑥1 − 1,  𝑦2 = 𝑥2 + 2, 𝑦3 = 𝑥3 and 𝑦4 = 𝑥4 − 3, which means that I am going to get 0  

on the left hand side of that variable 𝑦𝑖.  
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So, then what you will get is that 𝑦1 + 𝑦2 + 𝑦 + 𝑦4 = 16 such that 0 ≤ 𝑦1 ≤ 4, −0 ≤ 𝑦2 ≤ 6, 

0 ≤ 𝑦 ≤ 5 and 0 ≤ 𝑦4 ≤ 6 

Now this again, it is very similar to the previous question, let us just look at the set of all non 

negative integer solutions and then subtract using the inclusion exclusion. 

Let 𝑆 is the set of all non-negative integer solutions to this equation above. So, since there is a one 

to one correspondence between this equation in 𝑦 and the equation in 𝑥, we do not worry about 

number the numbers remains the same.  

So, the total number of non-negative integer solutions |𝑆| = ((16+4−1)
16

) = 969.But now then we 

have to put the other conditions on the right hand So, how do you do that? 
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So, let 𝐴1 be the solution in 𝑆 with the property that 𝑦1 ≥ 5 . Similarly, 𝐴2 is the solution in 𝑆 with 

the property that 𝑦2 ≥ 7, etc. So, then once you define this, so I am not doing all the details, so 

you can do on your own and complete the proof.  

So,  now, for each case you have to do some change of variables to reduce that particular variable 

to be in the nice form. So, what we are going to do is that we are going to do a change of variables 

again to say that, now 𝑧1 = 𝑦1 − 5 and 𝑧𝑖 = 𝑦𝑖 for every 𝑖 > 1. 

Now solutions of 𝑧1 + 𝑧2 + 𝑧3 + 𝑧4 = 11 after the change of variable will give you the cardinality 

of 𝐴1 and then what do you do? Well, this you can find out because you know for this equation, it 

is basically (14
11

) = 364. So, similarly, you can find |𝐴2|, then |𝐴3| and then |𝐴1 ∩ 𝐴2|etcetera and 

then compute this and give me the final answer. So, this is that, that is the homework for you 

complete the remaining steps and solve this question.  
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So, now, I will give you a few more homework questions. So, let us look at one by one.  

(1)  Find |{𝑓: [𝑚] → [𝑝]: 𝑓 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛}| ? 

(2) Find |{𝑓: [𝑛] → 𝑋: 𝑓 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑓 𝑓 𝑖𝑠 𝑎 𝑠𝑢𝑟𝑗𝑒𝑐𝑡𝑖𝑜𝑛}|? 

(3) Count the number of compositions of 40 into four odd parts.? 
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Then next question: Prove that 

(a)  𝑚𝑛 = ∑ 𝑆(𝑛, 𝑘)(𝑚)𝑘
𝑛
𝑘=0 , 𝑚 ∈ ℕ+ 

(b) Does the identity in (a) hold if 𝑚 ∈ ℝ, is any real number. 



• Find the number of solutions to the equation ∑ 𝑧𝑖
4
𝑖=1  such that 0 ≤ 𝑧𝑖 ≤ 8  for every 𝑖.  
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So, the next question is that: 

• In a party say that there are 10 men and 10 women are participating, then there is this hat 

check person who collects the hats when you enter and then they give it back when you 

go out. Now suppose this person returned the men's hat to men at random when they go 

back, but not necessarily the  same hat, take one and then give it to the first person who 

comes. Similarly, for the ladies hats also he returned only to ladies but then again, that is 

also at random, so from the ladies hats in one stand, he will pick one at random and give 

it to one of the ladies who is going, this way gives the hats. Then the question is that how 

many ways no one received their hat and then in how many ways exactly 2 men and at 

least 2 women got their own hats. So, these are the questions. 
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Then, another questions: 

• How many north-east lattice paths go from the point (1,1) to the point (8,8) that does not 

pass through points (𝑝, 𝑞) whose coordinates 𝑝 and 𝑞are both prime.  

• Prove that ∑ (2𝑘
𝑘

) (2𝑛−2𝑘
𝑛−𝑘

) = 4𝑛.𝑛
𝑘=0  


