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Diagonalization of matrices

Ok. So we have seen similarity transformations. So, in this lecture, we will look at a special

kind of similarity transformation which takes a matrix and which you know makes it diagonal

right, so that it goes by the name of Diagonalization of matrices ok.

(Refer Slide Time: 00:37)

Let us consider an n by n matrix A. You know I am explicitly writing it out, it has all these

you know elements of this matrix, there are n squared of these. So, I am looking at a matrix

which has n linearly independent eigenvectors right. I am not saying it is linearly independent

column vectors that is a different concept; I am talking about a matrix with n linearly

independent eigenvectors right.

So, if you recall from several lectures ago, we looked at certain matrices which we called

defective matrices right. Although every matrix is guaranteed to have exactly the number of

eigenvalues as its dimension. Although some of these eigenvalues may be repeated, there is



no guarantee that you know every matrix will have you know eigenvectors which will

complete the space right. You there are matrices which are called defective matrices, but we

will you know talk about this a little bit later.

But for the purpose of this lecture, let us look at matrices which have n eigenvalues lambda 1

all the way up to lambda n right. So, some of these could be repeated, there is no problem

with that. But the key requirement is that you know all these n eigenvectors are linearly

independent. If this happens, then let us collect all these eigenvectors.
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So, you have n linearly independent eigenvectors. We will notate this as you know X i these

coefficients S i 1 S i 2 so on all the way up to S i n. Then we have this defining property,

these being eigenvectors. These are A acting on X i should give you lambda i acting on X i.

So, if you stack them all together right, so now you see the point of the previous lecture

where we looked at properties of matrices formed by staking together such linearly

independent vectors. We saw that these are all linearly independent column vectors.

So, you have n linearly independent column vectors, each of these column vectors is linearly

independent. Therefore, necessarily S is an invertible matrix. So, this is important for us as



you can see. So, let us consider its inverse and denote it as S inverse as usual. Now, the

product of these matrices A times S is important.

So, A times S is you know there is this matrix A this is what we started with, and then we just

stacked together all its n linearly independent eigenvectors to form this matrix. So, we can

look at the product of these two matrices.
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And then we see that in fact, this product is something that we can work out in a

straightforward way because what is the first what is the effect of multiplying this matrix

with the first column vector; if I look at this column vector it is really a acting on X 1, so that

should giving you lambda 1 X 1, and so I can write lambda 1 X 1 as you know lambda 1 S 1

1 lambda 1 S 2 1 all the way up to lambda 1 S n 1.

And similarly if I take this entire matrix and multiply by the second column, I must get back

the same column, but now with these factors lambda 2 in here, lambda 2, lambda 2 so on.

And likewise for every column and for the final column, you see that if I multiply you know

this entire matrix with this column the nth column S 1 n, S 2 n all the way up to S n n will

give me back the same column except that I have to tag along these factors lambda n. So, A S

is something that I can immediately workout because of what I have chosen S to be.



Now we also know that S inverse exists. So, S inverse times S is equal to I. So, let us

sandwich A between S inverse and S. So, let us workout S inverse A S. So, S inverse S is

equal to I. So, S inverse A S, so we see that when we do A S you basically get s, but every

column has an extra lambda 1 there right you can convince yourself that all these does is if I

multiply S inverse with A, A S instead of S inverse with S, I will still have a diagonal

structure.

But now I will have to put in lambda 1 here, lambda 2 here, all the way up to lambda n right.

This you can see because S inverse acting on S is I. So, if you take the first row and multiply

by the first column, it must give you just 1, but now I have a lambda 1 here. So, it will give

you lambda 1, so likewise lambda 2 and so on up to lambda n.

So, what you have done just now is something called diagonalization right. So, we have

managed to do a similarity transformation on our original matrix A. And we have obtained a

diagonal form for which all of whose elements are just the eigenvalues of your matrix A

right. So, if we could find such a similarity transformation, you could use this to get to the

eigenvalues of this matrix.

But oftentimes you know to find the eigenvalues of the matrix, you can just go to the

characteristic you know equation you know come up with the polynomial find its roots, you

have another way of finding the eigenvalues right. But diagonalization involves finding this

similarity transformation which puts your matrix in a very nice form right.

We will see later that this has important applications, diagonalization of a matrix when it is

possible to diagonalize a matrix you know gives you some is a very nice thing to do. Because

you can compute lots of properties of your matrix which are in a matrix are understood in

terms of you know the eigenvalues, but also these the similarity transformation which

diagonalizes the matrix also contains the lot of information because all the eigenvector

information is also enshrined in it.
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So, there is a, so we have talked a lot about unitary matrices right. So, if your n vectors are

not only linearly independent, but also orthogonal. Then in place of S inverse A, S you will

just have you know U dagger A U right. So, if in addition to, if your eigenvectors of your

original matrix you had not only X, A X i giving you lambda i A X i with all these X i being

linearly independent right.

There is a you know shorter class of matrices whose eigenvectors are not only linearly

independent, but they are also orthogonal to each other. We have noted some of these

matrices right. And they appear in many important contexts like in quantum mechanics right,

Hermitian operator for example right. And or there is a way to find if in the presence of

degeneracy it is still possible to find the certain vectors which are eigenvectors of your matrix

and which are orthonormal.

When you have such a scenario not only do you have a similarity transformation, but you

have a special kind of a similarity transformation that is a unitary transformation which

imposes some more constraints on the nature of you know a nature of your the final diagonal

matrix of your system right. So, unitary transformation is a special class of similarity

transformation.

And there is another kind of transformation which is a special kind of unitary transformation,

and that is called an orthogonal transformation when you are dealing with these real numbers

right. So, U dagger is the same as just U transpose if all the elements of your matrix are real,



then you get an orthogonal transformation which is another further special class of unitary

transformations or unitary matrices ok. So, that is all for this lecture.

Thank you.


