Real Analysis - I Dr. Jaikrishnan J Department of Mathematics Indian Institute of Technology, Palakkad

Lecture - 1.3 Square Root of 2

In the last module we had used the fact that, the $\sqrt{2}$ is an irrational number. Let us prove that. Before I begin this proof let me remark that the proof I am about to give is considered one of the most elegant proofs in mathematics. It is very straightforward and simple at the same time very beautiful. First, let me make a very precise statement as to what I want to prove.

(Refer Slide Time: 00:44)

Proposition:	There SqWare			el number
Proof:	s upp ose	9=-	m is	rational.
F urt her ho	assume (o mmon		m and h	have
	s up pose	g =	2.	

Proposition: There is no rational number whose square is 2.

So, I am not stating that $\sqrt{2}$ is irrational, we do not even know what irrational numbers are so far. What I am stating is, if you take a rational number and square it you cannot possibly get the number 2. Let us see the proof.

Suppose, q equal to $\frac{m}{n}$ is rational, ok.

Further assume that m and n have no common factors, well, we can assume that simply, because if there is a common factor between m and n , I just cancel it out, I can get rid of

all the common factors and put q in its lowest form. Now, suppose $q^2=2$. So, this is going to be a proof by contradiction. I am going to assume that the result is false and that there is a rational number whose square is 2 and somehow arrive at a contradiction.

(Refer Slide Time: 02:26)

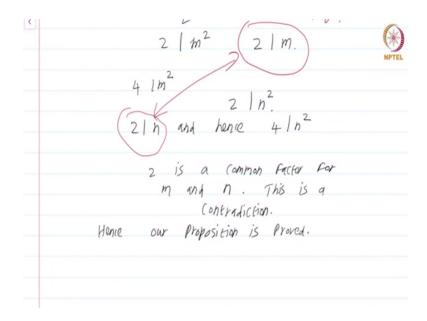
ו אינו ווצו אין איני ניוא ווי ייייי ייייי איני איני	
ho common Factors.	(*)
2	NPTEL
s up pose $q^2 = 2$. divisible by 4	
$m^2 = 2$ or $m^2 = 2n^2$	
n ² , dinies	
$\frac{m^2}{n^2} = 2$ or $\frac{m}{2} = 2n^2$.	
$2 m^2 (2 m.)$	
4 lm ²	
$2 \mid n^2$	
- · · · ,	

This just means that $\frac{m^2}{n^2}=2$ or in other words $m^2=2n^2$, ok. Now, what does $m^2=2n^2$ tell us? It tells us that 2 divides m^2 . This vertical line just means divides.

Because the right hand side is $2n^2$, 2 must divide the left hand side which is m^2 , but if you think about it since 2 divides m^2 , it must be the case that 2 divides m. Think about why this is true. If 2 were to divide m^2 there is no choice but for 2 to divide m, that means 4 divides m^2 ok.

4 must divide m^2 , why is this the case because 2 divides m therefore, 4 must divide m. That means the LHS here is divisible by 4; that means, the RHS must also be divisible by 4. Now, there is already a 2 coming from $2n^2$ squared putting all this together we get 2 must divide n square ok. Because 2 divides n^2 , by the same logic 2 divides n; and hence 4 divides n^2 .

(Refer Slide Time: 04:16)



This is actually not going to be useful in the proof all I need is that 2 divides n , ok. But I am just making that remark, but that means 2 divides m and 2 divides n as well. What is the upshot of all this? 2 is a common factor; 2 is a common factor for m and n . This is a contradiction.

Why is this a contradiction? Because we have assumed that m and n have no common factors. Hence, our proposition is proved. This is a course on real analysis and you have just watched the module on the square root of 2.