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So, let us continue our study of ring homomorphisms. So, we have defined and looked at some

important examples of ring homomorphisms. So, now, I am going to start talking about associ-

ated things to ring homomorphisms. So, let us start. So, what we will do now is talk about some-

thing called the “Kernel of a ring homomorphism”. So, you all know from group theory and

when you learned about group homomorphisms there is something called kernel of a group ho-

momorphism. So, let us do that.

So, let us look at kernel of a homomorphism. So, and the definition is exactly the same. So, be-

fore that let me actually give you an exercise, which we have essential done in our calculations

earlier.
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So, let us say phi from R to R prime is a ring homomorphism ok. So, here of course, I am not

saying this, but R and R prime are two rings; R and R prime are two rings and phi is a homomor-

phism. Then, if you simply look at phi forget the multiplicative structure on R in other words just

look at the additive group of R and R prime. If you look at R and R prime R to R prime as a

function of the additive groups, this is a group homomorphism ok.

So, if you go back to the previous video and just look at the relevant parts you will see a proof of

this. By definition, a plus b should go to phi of a plus phi of b phi of a plus phi of b, but the other

properties will ensure that 0 will go to 0 phi of minus says phi of minus phi a ok. So, this is not

difficult to check. 

So, it is a group homomorphism. So, now recall so, this exercise for you to do so, you have to do

this. So, recall the kernel of a group homomorphism. What is a kernel of a group homomor-

phism? It is the set of elements that map to 0 right, kernel is always the set of elements that map

to 0. So, we use the same definition here. So, this is really a set theoretic object. So, we use the

same definition for ring homomorphisms. So, the kernel of phi so, now, this is just an aside.
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So, given phi from R to R prime a ring homomorphism, the “Kernel of phi” which is denoted by

ker phi is by definition the set of all elements of R so that phi of a is 0. So, let us focus a little bit

on what kind of element, what kind of subset this is, this is a subset of R right. But, because ker-

nel is really defined using the notion of group homomorphism, it is more than a subset. In fact,

kernel phi is a subgroup. So, I am going to write additive subgroup just to emphasize the fact that

we are looking at the addition on R. So, additive subgroup of R coma plus.

So, when I write R coma plus I mean I am insisting to that I am looking at R as an additive group

forgetting the multiplication. So, it is an additive subgroup of R coma plus this is exactly what

we have done in group theory. So, there is in other words if 0 is in the kernel, that 0 is in the ker-

nel is the first point, if a and b are in the kernel a plus b is in the kernel that follows from the def-

inition, if a is in the kernel minus a is in the kernel.

What other properties of now let us comeback to ring theory; we are doing rings not groups. So,

what other properties does kernel have? Is kernel is sub ring? Think about it for a second. Is ker-

nel a sub ring? It is not. Why not? It is not, because remember a sub ring is a subset which is a

ring by itself in particular it is supposed to contain 1, but can the kernel contain 1? No, kernel

does not contain 1, because what is phi of 1? By definition, phi of 1 is 1 and I am assuming as al-

ways that 1 is not 0 in R not prime ok.

R prime assume always all over rings are not zero. So, there are at least two elements; 1 and 0

they are distinct elements. So, 1 is not 0. So, kernel phi is not a sub ring. So, the analogy of with

a kernel of a sub group homomorphism being a subgroup does not carry over here it is not a sub

ring, but it does have nice properties in particular in addition to being an additive sub group it

has the following property.
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Kernel phi has the following property: kernel phi has the following property. So, if a is in the

kernel what I want to say is that it is closed under multiplication, but in a strong way. It is not

just closed in the sense that to multiplication product of two things in kernel is in the kernel, but

product of something in the kernel by any group element is in the kernel ok. Why is this? So,

why? This is very easy to check. So, what is, in order to check if something is in the kernel we

have to see if it is it is image is 0 or not. So, what is phi of r a? Phi of r a is by definition of a ring

homomorphism is phi of r times phi of a.

Now, r is an arbitrary group element. So, we do not know anything about phi of r, but we do

know that a is in the kernel. So, phi of a is 0 right, phi of r is something, but phi of a is 0, but phi

of r times 0 is 0, because anything times 0 is 0. So, phi of r a is 0, so that means, r is in the kernel

sorry r a is in the kernel.

So, it has a very strong multiplicative closure property. Take anything in the kernel; take any-

thing in the ring not in the kernel anything even outside the kernel, the product is in the kernel.

So, kernel has the following properties so, kernel has the following properties.

(Refer Slide Time: 08:09)



                        

one, it is an additive subgroup of R plus, and two, if a is in the kernel r is in the ring the product

is in the kernel ok. Now, we want to give a special name to subsets of a ring that have this prop-

erty. So, kernel phi is a special case of that. So, kernel phi is an “ideal” ok. So, what is an ideal?

So, this is a very very important word in ring theory. So, after defining rings and homomor-

phisms the next important thing is this.
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So, I will formally write the definition, it is simply the properties one and two. So, an “ideal” I of

R is a subset of R satisfying. So, I am going to repeat exactly the conditions that I wrote: I is an

additive subgroup of R plus. So, in particular it is not empty remember 0 must be in I. And, ii if

you take an arbitrary element of I and an arbitrary element of the ring the product is also in I, ok.

So, the ideals are this and kernels of homomorphisms are ideals. In fact, kernels of homomor-

phisms or exactly the ideals. So, in general any ideal can be realized as the kernel of a ring suit-

able ring homomorphism. So, the most important examples of ideals are the kernels of ring ho-

momorphisms ok.

So, we started with the definition of a kernel of a ring homomorphism and we noticed that it is

not a sub ring, but it is what we now call an ideal ok. So, in order to understand more about

ideals, let us look at some examples ok.
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So, the ring homomorphism, that we looked at earlier Z to Z mod 4 Z, what is the kernel of this?

What is the kernel of this? So, I claim the kernel is all integers remember kernel is a subset of the

domain in this case Z. So, all integers such that phi of n is the 0 element of Z mod 4 Z which is 0

bar in our notation.

So, this is precisely 4Z right, this is simply all multiples of 4 ok. So, when does an element in Z

go to 0 under this homomorphism, remember this map sends n to n bar right. So, n bar must be 0.

So, n bar must be 0; that means, n must be a multiple of 4. So, kernel is exactly the multiples of

4.
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The other example that we looked at, let us say phi from Z[x] to Z ok. So, this is the substitution

map, substitution remember phi 2 is what I think we looked at. So, here f x goes to f of 2, what is

a kernel of this? Kernel of phi 2 is all polynomials in Z[x] such that f of 2 is 0 ok.

So, now I am going to tell you ask you to recall something I talked about when I talked about di -

vision inside polynomial rings. So, recall so, in any ring R and any polynomial ring R[x] if you

fix alpha in R. Let us say so, f x or g x in R[x]. We can divide g x by x minus alpha right always

divide that because x minus alpha is a monic polynomial. So, we can divide g x by minus alpha

the reminder is g of alpha right. This I have proved reminder when you divide g x by minus al-

pha is g of alpha.
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So, now if you apply this idea to our situation in our case, the reminder when we divide f x by x

minus 2 now, in our case x minus 2 is f of 2 right. And, now if f is in the kernel, now if f is in the

kernel of phi 2 then f of 2 is 0 right. So, actually I will write it like this, f is in the kernel if and

only if f of 2 is 0, because that is the definition of the kernel, f is in the kernel if and only if f of 2

is 0.
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That means, this happens if and only if the reminder upon division of f x by x minus 2 is 0 right,

because f 2 is precisely the remainder when you divide f x by x minus 2. So, f 2 is 0 means the

reminder upon division of f x by x minus 2 is 0; that means, f x is divisible by right that is what

we say when the reminder is 0, we say that is divisible. For example, when you divide 5 by 4 by

2 the reminder is 0. So, we say 4 it is a divisible by 2. On the other hand divide 5 by 2 the re-

minder is 1. So, we say 5 is not divisible by 2. So, f x is divisible by x minus 2. So, kernel of phi

2 is precisely when if f x is divisible by x minus 2 that is another way of saying f x is a multiple

of x minus 2 right.

So, in other words the up shot all this is kernel phi is precisely set of all multiples of x minus 2.

So, in a I can write it like this kernel phi 2 is exactly x minus 2 times h x, where h x is any arbi -

trary polynomial of Z[x] right. Multiple of x minus 2 means x minus 2 times an arbitrary thing.

So, that is how we describe the kernel of phi 2. So, kernels have this nice form. So, now I want to

mention as nice observations. So, this is a small lemma.

(Refer Slide Time: 16:31)



                        

In the first example, that we looked at above kernel of the map from Z to Z mod 4 Z turned out

to be multiples of 4. So, in other words what I want now say is that, any ideal of Z has the form

nZ for some n greater than or equal to 0.

So, any ideal of the ring of integers has the form nZ remember what is a nZ? So, this is the set of

all multiples of n. So, that is just a short convenient notation for writing all the multiples. So, nZ

stands for an as a varies in Z. So, I claim that every ideal has that form. So, this is a very nice re -

sult right because you cannot have strange sets becoming ideals. So, every ideal is in this form.

So, the proof is a standard proof using Euclidean divisions. So, let us quickly do this. So, let I be

an ideal of Z. If I is equal to 0 remember I is an additive subgroup of Z. So, it must be non-

empty. So, it must contain 0. If, it is exactly 0 then I is 0Z right. So, we are done right. So, we are

done.

So, please pay close attention to this, this is a very nice, simple, but an extremely important argu-

ment in ring theory and this is this sort of thing comes up all the time. So, if I is simply the just

the 0 element, it is of the form 0Z right, because 0 times n as 0 times a as a varies it is just 0. So,



we are done we have we are claiming that every ideal is of the form nZ, if it is simply 0 then it is

0Z.
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So, assume I is not the set zero. In other words I contains some other element. So, let so, first of

all I claim that we can now assume. In fact, then I contains positive integers. If I contains some-

thing non-zero it contains positive integers, that is because very simple example. So, if for exam-

ple, minus 10 let us say is an I.

We know that I contains something non zero, if it is positive we are done, suppose not. Let us

take a negative integer, but I is supposed to be a subgroup right. So, minus of minus 10 which is

10 also belongs to I right. So, I contains a positive integer. So, I contains some non-zero integers

by assumption, if you happen to pick a positive number you are done. Suppose you pick a nega-

tive number you simply take its negative. So, I contains positive integers so, that I hope is clear

right; so, I contains positive integers.



Now, what I will do is let n be the smallest positive integer in I ok. I can always choose that right

and I consists of some positive integers, I can I cannot pick may be the largest one, but I can al-

ways pick the smallest one so, let n be that let n be the smallest positive integer in I. Now and

then choose, now I claim that I is in fact, nZ. This n will do the job for us, I is nZ. Why is this?

So, choose let any let first take care of positive integers. 

Let m be in I m positive; by choice of n, by the choice of n, m is greater than equal to n right. Be-

cause m is positive, n is positive n was the smallest positive integer containing contained in I. So,

m is at least 10.
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Now, divide m by n. So, what we can do is m is equal to n times q plus r, right. We can always

divide m by n and we can write it like this. And, what is the property of r? r is actually strictly

between sorry r is either greater than equal at least 0 and strictly less than n. 

Because, we are dividing by n the remainder will be strictly less than m; but now notice an inter-

esting thing, n is in I by choice; that means, nq is in I, m is in I, by also choice right; that means,



m minus nq is n I. Because, n is in I by ideal property nq is in I, m is in I by ideal property again

m minus nq is in I, but the m minus nq is in r is equal to r so; that means, r is in I.

But, now we have a problem because, if r is positive this leads to a contradiction. What is the

contradiction? What is the contradiction? If r is positive, r is strictly less than n by choice of by

the process of division. So, if r is positive, because with we have then, because n is the smallest.

See the contradiction is to the fact that n is the smallest positive integer in I, if r is positive r is

less than n, r is smallest r is smaller than this smallest positive integer in I which is certainly ab-

surd.
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So, r must be 0. And, hence m is divisible by n which is another way of saying m is a multiple of

n right. So, what we have shown is that, we have taken an arbitrary positive integer in I and

showed that it is a multiple of n ok. Now, we want to say that every integer in I is a multiple of n.

Now, on the other hand if m is negative and m is in I, by the above argument, by the above argu-

ment applied to minus m right. If m is negative minus m is positive we know that minus m is a



multiple of n. But, then so, is right minus m being a positive integer in I is a multiple of n, but

hence obviously, m is also because minus m is n times something m is n times minus of that

thing.
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So, we conclude in conclusion, every integer in I is a multiple of n. And, we also need to show

that, also since n is there in I, every multiple of n is also in I right. Because, I is an ideal, if n is

there, every 2 times n is there, 3 times n is there, minus n is there, minus 2 times n is there. So, I

is exactly equal to nZ, as required. This is a very beautiful augment which shows that every ideal

in Z is of the form nZ.

So, we are going to talk more about generators of ideals later and talk about principal ideals. So,

and at that point I will remind you this says that. So, this is just a preview of what I will do next.

Every ideal in Z is principal. So, “principal ideals” are ideals generated by a single element. So, I

just to preview what I will do next, but I said that every ideal in Z is a principal ideal generated

by a positive integer n or of course 0, non-negative integer n I should say.



So, I am going to stop this video here, but in the next video or in one of the next videos, I will

show that the same result holds for polynomial ring in one variable or a field so, that I will do

next. So, in this video we looked at kernels of homomorphisms, we looked at what properties

those kernels have and noticed that they are examples of what we defined as ideals. And, we

looked at examples of ideals in various rings and in particular we showed that every ideal in the

ring of integers is of the form nZ for a non-negative integer n.

Thank you.


