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Let us continue now, we are in the middle of proving the structure theorem for finite

fields which is this statement,  it  says a lot of information; gives a lot of information

about finite fields. We proved a couple of these statements and let us now do the remain-

ing parts.

So, far we have proved (d) and we have actually not proved (c), but I told you that I will

skip the proof, because it uses some group theory facts which I do not want to do now.

And now, let us now prove which is the main theorem that we want focus on.
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So, (a), which is exactly the existence of finite field; existence, so I will write it here ex-

istence of fields of order q. Remember in the example that I did in the before the stating

the theorem in the last video. We constructed a field of order four by looking at F 2 and a

degree two irreducible polynomial and going modulo that. But I also commented in the

last video, that in general this method is difficult to implement. Because how do you

know that there is a irreducible polynomial of degree r over F p; if it exists, then we can

go modulo 8 and get the field that we want which is p power r. 

So,  we are going to take a different  approach using what we have already observed

which is that elements of such a field if it exists are going to be roots of X power q minus

X. So, what we are going to do is use a theorem that I have proved earlier in the video,

earlier in the course about splitting fields. So, let us do the following. 

So, let I considere the polynomial X power q minus X in F p X. We already know that,

every field every polynomial over a field has a splitting field. If you go back and look at

that splitting fields video, you will see that we proved that in general capital F was any

field small f was any polynomial and we constructed a splitting field. So, that was not

specific to finite fields or infinite fields or anything like that. So, we will apply that to F

p and X power q minus X. 

So, let us take some splitting field. So, let L be a splitting field actually we do want a

splitting field, but I will state it like this. So, that it becomes slightly easier to understand



what I am saying. Let any, let L be any field extension of F p over which X power q mi-

nus X splits completely. So, we have such a field.

So, you have F p here and some extension exists where X power q minus X splits com-

pletely; that means, it is a product of linear polynomials. What we want is that just look

at the roots of this by part (d) that I already proved; remember, part (d) that I already

proved that any field of order q that we are now trying to show exists is going to be ex-

actly the roots of X power q minus X.

What I have now done is I have constructed a big field where X power q minus X splits

completely; that means, it L contains all the roots of X power q minus X. We know that

K is supposed to be the desired field K of order q is supposed to be this collection of

roots of this.

So, we want to just take K to be alpha in L such that alpha is a root of X power q minus

X. We know that alright, I am just rewriting that we know that K if it exists is supposed

to be like this. So, I will define K like this and hope for the best, what do we need to

show? It is a subset of L now.
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We get what we want, if we show that K is a field, right. If K is a field it certainly has we

also need to show that containing q elements. So, let us say we are done if K is a field of



order q. So, I need to also show that it has order q. So, I need to show that it is a field and

that its order q. So, two things; K has q elements.

So, there are two things I will break up the proof into two parts, K has q elements and

that K is a field. So, this I will not do in detail because I did not do the notion of multiple

roots of the polynomial in detail. So, I am going to just quickly tell you that K has q ele-

ments, because how can it have fewer than q elements? If it has fewer than q elements

that means, some root is a multiple root; if K has less than q elements.

So, remember K is the collection of roots of X power q minus X, it is an exercise that

there are at most q of such elements so, but it can be in general less than q. So, certainly

what I am saying is that maybe I will do this as an exercise later. Order of q K is less

than or equal to q we know this. If you have a polynomial or a field of order q degree q

its roots is at most q and we are now trying to show that it is exactly q. Suppose, it has

less than q elements then one root must be a multiple root.
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What I mean is you can write X power q minus X factor in L X. You can factor at L in L

X, X power q minus X as X minus alpha 1, X minus alpha 2, all the way up to X minus

alpha q. You because this is degree q and you have every factor is a linear factor. So,

there must be q linear factors right, there must be q linear factors.



If the q linear factors are all distinct then you have q distinct roots and that is the claim

that I am making. Suppose q has fewer than K has fewer than K elements q elements;

that means, something is repeated. So, if order of K is strictly less than q, then we have

alpha i is equal to alpha j for some i not equal to j. So, without loss of generality, so we

suppose alpha 1 is equal alpha 2.

So, some factor is repeated so, it is called a multiple root alpha 1 is called a multiple root.

But then I want to rewrite this X minus; X power q minus X as X minus alpha 1 whole

squared times g X. The remaining thing I do not care right, because alpha 1 is equal to

alpha 2; the first two things I will combine and write it like this.

Now, if you differentiate both sides what do we get? We get q times X power q minus 1

minus 1 that is the derivative of the left hand side, the right hand side I am going to use

the product rule. So, I will have X minus alpha 1 whole squared times g prime X. Let us

g X times 2 times g X times X minus alpha 1, right. So, I have this.
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Now, plug in X equal to alpha 1, what do I get? I get so, this is actually equal to minus 1,

why is that, because q is 0 right, q is p power r; that means, q is 0 in L. If L contains Z

mod pZ; that means p is 0, once p is 0, p squared is 0, p cubed is 0 p power r 0. So, q is

0; that means, minus 1.



So, if you plug in minus alpha equal to X; on the left side nothing changes because it is a

constant. On the right hand side you get alpha 1 minus alpha 1 whole square times g

prime alpha 1 plus 2 times g of alpha 1 times alpha 1 minus alpha 1, but this is 0. Be-

cause this is 0 and this is 0, but; that means, minus 1 equals 0; that means, 1 equal to 0,

because I can take negative of both sides this is not possible. Because in any field you

have at least two elements and 0 and 1 are going to be different. 

So, this is not possible, so; that means, no root can repeat, that is a point. In multiple root

must be a common root of the polynomial and its derivative. But, the derivative of the

special polynomial that we are interested in here X power q minus X is actually minus 1.

So, it cannot have any roots. So, the derivative and the polynomial cannot have common

roots. So, the polynomial in question has q distinct roots. So, K has q elements. 

So, now, second part is K is a field. This is a very rare situation, we are taking a polyno-

mial and taking its roots, very rarely do they form a field, roots of a polynomial rarely

form a field. But, it happens over finite fields and these specific polynomials. So, what

do we have to show? So, I am going to skip most easy things, what are we going to

show? So, we want to show 0 is there, 1 is there, minus 1 is there, if alpha and beta are in

K and let us say alpha is not 0 then alpha inverse is there, alpha plus beta is there, alpha

beta is there and so on.
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So, these are the conditions right, we have a subset of K of L and we are claiming that it

is  a  field;  that  means,  take  two elements  their  product  is  there,  the  sum is  there,  if

nonzero, then its inverse is there, 0 is there, 1 is there and so on, ok. So, let us check all

these things one by one; 0 power q is certainly 0 that means, 0 is in K. Remember the

definition of K, K is the set of roots of X power q minus X. So, if any root any element

of L satisfies X power q minus X, it is in K. 

So, I hope you are following everything if not please pause the video think about it, this

is the most crucial part of the whole structure theorem. In fact, (a) and (b) are the most

important statements. So, 0 is there, 1 power q is 1 so, 1 is there right similarly minus 1

power q is either minus 1; so, there are two possibilities right, if it is 1 if q is even, minus

1 if q is odd.

In this case of course, we are done because minus 1 power q is minus 1 and hence minus

1 is in K. But, if q is even also we are done, because if q is even; that means, q is of the

form 2 power r, right. The only even numbers which are powers of primes or powers of

2, in which case minus 1 is 1; because its characteristics is 2. So, 2 equal to 0 means 1

plus 1 equal to 0 that means, 1 equal to minus 1. 

So, again in this case minus 1 power q is actually equal to 1 which is equal to minus 1 so,

minus 1 is in K, ok. And if alpha power q is alpha and alpha is nonzero then alpha in-

verse exists in L and its power q is also alpha power q minus 1 which is alpha power mi-

nus 1. Similarly, the easier thing is alpha beta are in K and alpha beta is in K. So, this is

easy.
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So, the main thing to check is the sum; all these things are easy, main thing to check is

the sum. Let us say alpha and beta are in K, we want to show that alpha plus beta is in K

and this is where the characteristic again comes to our rescue. Again let me remind you,

what is the meaning of being in K? That means, its power its q th power is itself. So, let

us take the q th power alpha plus beta power q.

If you apply binomial theorem you get alpha power q; q choose 1, alpha power q minus 1

beta; q choose 2, alpha power q minus 2 beta as square dot dot dot, q choose q minus 1

alpha beta power q minus 1 plus beta power q, right. This is the binomial expansion of

alpha plus beta power q. 

Now, this is a simple fact which I think came up in the earlier part of the course. Since q

is of the form p power r, you can show that q power; q choose I is 0 for all I between. So,

all you need to do is simply write q power i as q factorial divided by factorial times q mi-

nus I factorial. And first prove it for P itself in which case it is trivial then by induction

extend to powers of q. So, I am going to skip this again, this is going to lead me in a dif-

ferent direction.

So, I will skip this sorry, actually I should not say this is not 0. In general I can say it is

divisible by sorry divisible by p for all i between 1 and q minus 1. Because there will be

a factor of p in the numerator that will survive after cancelling all the factors in the de-

nominator.



So, it is divisible by p, but if it is divisible by p we are in a field which contains F p

whose characteristic is p; that means, p 0 in F p hence p 0 in L. So that means, this is 0

this is 0 this is 0. So, every intermediate term is 0 so, this is alpha power q let us beta

power q, only the first and the last terms survive, but alpha and beta are in K. So, alpha

power q is alpha beta power q is beta. So, alpha plus beta all power q is alpha plus beta.
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So, this is an indirect proof, but it is a very nice proof. So, K is a field of order q. So, we

have shown that for every prime power there is a field of that order. So, let me now

prove part b, which is the second most important part of this whole structural theorem,

let K and K prime be two fields of order q.

We want to show that K and K prime are isomorphic as fields, of course, which is same

as rings, ok. So, let us prove that, what we have is by part so, I forget the part. So, part

(b) is the statement that any two to fields of order q are isomorphic. We know part (c),

though we did not prove it we are going to make use of it. Part (c) says that K cross

which is the multiplicative group of non-zero elements of K is generated by a single ele-

ment let us call that alpha, right. 

So, in particular we must have that K is F p alpha, right; remember all these extensions

are finite K and K prime are finite fields. So, they are finite extensions of F p, because

certainly if you finite field there the dimensions is also finite. So, it is a finite extension



so it is an algebraic extension. And in fact, alpha generates it because remember this is

easy.

Because, what is K? It is actually 0, 1, alpha, alpha squared up to alpha power q minus 1.

Because other than 0, the remaining elements are in K cross which is a cyclic group of

order q minus 1 generated by alpha. So, K cross contains elements of the form 1 alpha al-

pha squared alpha power q minus 1 and K of course, contains 0 so, K is this. What is the

meaning of being F p alpha? That means, every element of K is supposed to be a polyno-

mial in alpha. 

In fact, every element of K is a very simple polynomial in alpha, every element of K is

either 0 or in fact, the power of alpha. So, this is certainly true in fact, much more than

this is true this is a very weak statement. I am saying that this is certainly true what we

have here is a much stronger statement than this, but I will only use this fact so, ok.
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Now, we can actually draw this picture K, F p and K is F p alpha. What is the degree of

this extension? It is r right, because this has q power r elements sorry, this has q elements

which is p power r and this has p elements. And we used the counting argument in the

earlier video, which says that if the elements are p power r here over a field of order p

the dimension is r; so, the irreducible polynomial.



So, let f be in F p X be the irreducible polynomial of alpha over F p it is an algebraic ele-

ment. So, we can take irreducible polynomial. Since K colon F p is equal to r the degree

of f is r, right. This is way back when we talked about degree of field extensions versus

degree of elements; so, degree of F itself is r. Also we know that f divides X power q mi-

nus X, why is that?

The reason is alpha power q is equal to alpha, alpha being an element of K and by part

maybe a d or d I think we showed that every element of K is a root of X power q minus

X. So, in particular alpha is a root of X power q minus X, but f is a irreducible polyno-

mial of alpha; that means, f divides that.

Now, K prime which is a field of order q also consists of roots of X power q minus X

right also consists of roots of X power q minus X. So, since f divides X power q minus

X, f must have a root alpha prime in K prime ok. So, this is a bit tricky, but what I am

saying is that K is there it is an extension of F p of degree r. 

Similarly, K prime is there this is also an extension of degree r, because K prime also

contains p power r elements; alpha is here, right. The irreducible polynomial of alpha is

small f; which lives over capital F p. That small f divides X power q minus X, X power q

minus X splits completely in K prime, because K prime exactly consists of roots of X

power q minus x; that means, f must have a root in K prime. I am calling that alpha what

you have to be careful about is, you cannot compare and K prime they can be very differ-

ent. They are not contained in each other or they are not contained in a bigger field. 

So, you cannot say alpha is in K prime that could be incorrect. But we can say that f has

a root alpha prime in K prime. Then, what would be? So, I am going to squeeze in here F

p alpha prime and I have a K here prime here. So, F p alpha prime is here which is a root

of; so, now, I will remove that r here F p alpha prime is the field generated by alpha

prime where alpha primes is the root of f. So, f must be the irreducible polynomial of al-

pha prime over F p, because f is an irreducible polynomial, alpha prime is a root of f. So,

f must be the irreducible polynomial of alpha prime. 

But, then degree of f is r; so, this must be r right a degree of an extension is equal to de-

gree of a extension generated by single element is equal to the degree of that element.

But this whole thing is also r, right that is because K prime has q elements which is p

power r so, this is r that means, this must be 1.
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When is something 1, when is a degree of field extension 1 so, K prime is equal to F p

alpha prime. But, what is F p alpha prime? This is another way of writing, F p X modulo

f, right. This was done in the beginning of our field theory part. Because anytime you ad-

join an algebraic element it is isomorphic to do this ring modulo, the ideal generated by

the irreducible of polynomial that algebraic element.

But this is also same as F p alpha, because F p alpha is also obtained by going modulo

the irreducible polynomial of alpha which is f, but of course, that is K ok. So, K is iso-

morphic to K prime as required. So, this completes the proof of part b. So, part b; re-

member part b and a are the important things for us, part b was that any two fields of or-

der q are isomorphic.

So, this I have shown; I have shown that there is a field of order q we are shown today in

the beginning. In the last video I have shown that any ok so, not sure, but I have com-

mented that this is true because of the fact in group theory and I will not prove that. So, c

is taken care of and in the last video we have proved d that every field of order q consists

of roots of X power q minus X. So, that leaves two parts.

So, I am going to go fast over this and I would rather give examples to illustrate this in-

stead of proving this because proof can get a bit tricky. So, I will instead of proving all

directions both directions, so I will prove some parts of it. So, let us now come to e. So,

let us now come to e.
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So, let us come to e; e was talking about sub fields of F q. So, one direction is clear that

is because so, let us say q is p power r and q prime is p power k, ok. Suppose so, also a

notation I should have written this before writing that a field of order q will be denoted

by F q by the part b any two fields of order q are isomorphic.

So, up to isomorphism I am allowed to use this symbol to denote any two fields. So, any

field of order q will be denoted by F q. So, now, I am considering sub fields of F q. So,

suppose F q prime is contained in F q; that means, if you draw the picture they have F p

F q prime F q, right. 

And what is the degrees of these extensions, what is the degree of F q prime over F p?

Because q prime is p power k, I claim this is k right, because q is q prime is p power k at

the dimension will be the exponent. What is the degree of this? That is r that is what we

have been doing; q is p power r so, this is r. So, by the multiplicativity of degree X field

extension degrees of field extensions we know that k divides r. In fact, this will be r by k.

So, then the product of this two is r.
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So, the statement we have just proved is that F q; let me write it like this even though it is

a bit messy, but if F p power r contains F q F p power k; that means, k divides r. The

converse is also part of the statement, the converse I will not prove in detail, but only

comment on the following for the converse. Suppose k divides r ok, suppose k divides r

the fact here it is a simple numerical verification which I will leave this as an exercise for

you.

If k divides r you can just this you can be; this you can find in any book. And one can

show that p power k minus 1 divides p power r minus 1. So, I will skip this. If k divides r

so, this is if k divides r, ok. So, if k divides r what I am saying is for example, 2 divides

4; that means, p squared minus 1 divides P power 4 minus 1 this is because P power 4

minus 1 can be written as P squared minus 1 and P squared plus 1, ok.

Something as simple as that, but in general you need to prove this. So, if I will assume

this if k divides r then p power k minus 1 divides p power r minus 1 minus. In this case

let us look at F q, remember we are trying to show that F q contains F p q is again let me

remind you p power r q prime is p power k. I am assuming k divides r and I am trying to

show that F q contains F q prime. F q cross is a group of order, cyclic group even of or-

der p power r minus 1 q minus 1.
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So, I am trying to avoid the q here because there is q and q prime it is a bit confusing. So,

this is p power r F q cross is, it is a cyclic group of order p or r minus 1. Since p power r;

p power k minus 1 divides p power r minus 1 there exists an element of, let us call it beta

of order p power k minus 1 in F power r cross.

So, this is a group theory statement. If you have a group cyclic group of order 100 any

number dividing a 100, there is an element of that order, right. So, this is a statement

about cyclic groups p power k minus 1 divides p power r minus 1 so, there exists an ele-

ment beta of ordered p power k minus 1.

So, now, the group generated by beta are the roots can is exactly the set of roots of X

power p power k minus 1 equal to 1 right, roots of the polynomial this. Because if b has

order p power k minus 1 means b power p power k minus 1 minus 1 is equal to 1. Simi-

larly b square has that property b, q as a property all powers of b have that property.
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Now, if you define L to be 0, beta, beta squared and so on. Then by the same argument

that we have used earlier L is a field of order p power k exactly equal to p power, k, be-

cause there will be p power k minus 1 elements here and you are adding 0 to it. So, this

is a field of order p power k. And hence so and L is of course, in L, L is of course, in F q

because these are all elements in F q, right. 

So, beta is in F p power r so; that means, these are all in F p power r. Hence L is isomor-

phic to F p power k right, because it is a field of order p power k. So, it is isomorphic to

the unique field of that order. So, F p power r contains F p power k, ok. So, this is part d.

So, finally, let me quickly prove part e which finishes this statement about sorry this is

part e I think, so I want to do part f the final part.
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So, this is the irreducible factors of X power q minus X in F p X that last part is this ok;

so, let us prove this. So, suppose and we remember so, let me show you the theorem. So,

the factors of X power q minus X or the irreducible polynomials in F p X whose degree

divides r, ok. So, let us prove this.

So, let g in F p X be irreducible of degree k. So, suppose it is irreducible of degree k. So,

now, we are going to work with K which is F p power r sitting over F p this is a field ex -

tension of degree r. And remember X power q minus X splits completely in F p power r.

It is in fact, X minus each element of F p r and you take the product. So, this is degree r

extension.

So, now suppose g divides X power q minus X in F p X. So, it is same as dividing in F q

X, but I will not stress that here. Suppose g divides this in F p X, then g splits completely

in K which is F p power r, right. Because X power q minus X splits completely so, g be-

ing a divisor of it also splits completely.

This implies g has a root beta in F p r, right. So, g has a root in F p r so, let us call that

beta. So, what I will now do is, I will expand this what I get is F p beta F p right so; that

means, and what is the degree of this? Degree of g is equal to the extension field the de-

gree right and we call that k. So, k is the degree of k of g. So, the degree of the field ex-

tension is k, this is again degree of a field extension generated by an algebraic element is



equal to the degree of that particular algebraic element. But that means, this whole thing

is r right. So, k divides r. So, if g divides that k divides r. 

On the other hand, suppose k divides r, let beta in L. So, let L be an extension of F p in

which g has a root. So, what I am saying is that you have a root let us call it beta again. I

remember that for any field in any polynomial over there you can construct a bigger field

in which it has a root. Because g is irreducible all you need to do is go modulo g, F p X

mod g will do the job.
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So, now I can actually take a F p beta L. So, now, what is their degree of F p beta by the

same reason as before, F b beta over F p is equal to degree of g which is k, so that means,

this is k.
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Now, by the previous part, since we are assuming k divides r by part e, F p power r con-

tains a field which is isomorphic to F p power k by power p right, this is exactly power p.

We have shown in part e, if k divides r, F p power r contains F p power k. So, F contains

F p power r contains F p power k; which is actually isomorphic to F p beta because F p

beta as degree k or this; that means, this is F p power k, right.

Because this is p elements this dimension is k; that means, this is p power k elements. So

that means, the corresponding element there is an isomorphism here, this is contained in

this in sort of you can put this loosely speaking you can put this line here; that means,

you can think of this as a subfield of this. So, because of that, because F p beta can be

thought of as a subfield of F p r, g has a root in F p power r.

All we need to do is look at the isomorphism of its sub field and look at the image of

beta; that means, it as a root in F p r. But that means, let us say root that root is called b

prime in F p r, but b prime is a root of X power q minus X also; because every element

of F p power r is the root of X power q minus X where q is p power r.

So, g is irreducible polynomial of beta prime, X power q minus X is another polynomial

that has beta prime as a root. Hence, g divides X power q minus X actually in F p X I

will say and this is r, last part I will wave my hands. If you have field extension and two

polynomials in the smaller field and if one divides the other in the bigger field, it divides

in the smaller field also.



Because, the division process does not keep track of which field you are working with,

assuming you have started with the polynomials in the same base field, ok. So, that is an

aside, but we conclude that g divides X power q minus X. So, if k divides r any and if we

have g irreducible polynomial degree k it divides X power q minus X.

So, now let us go back to the statement of the theorem. We showed that irreducible fac-

tors of X power q minus X are exactly the irreducible polynomials. So, its degree divides

r; because we have shown that any irreducible factor of X power q minus X has a degree

dividing r. And we have also shown that if you have any irreducible polynomial whose

degree divides r, it divides X power q minus 1, X power q minus x. So, this is done and

we before that we have shown e. 

So, all the parts are done, so this is the proof of the structure theorem and I admit that I

have gone very fast maybe in the last two parts. But, the statements are important and I

will do some examples in the next video to illustrate how to apply those results. But, the

most important thing to keep in mind is that there exists a field of order q always, any

two fields of order are q isomorphic.

And of course, q is p power r that is very important; because if q is not p power r it can-

not exist, that we have already shown; only possible finite fields are order p power r.

And we have also mentioned that the multiplicative group of any field finite field is a

cyclic group of order q minus 1 and elements of field of order q are roots of X power q

minus X.

And then we have two statements about subfields of F q and irreducible factors of f: X

power q minus X. So, let me stop this video here; this completes the proof of the struc-

ture theorem. And also completes the course except that I will do now a video with ex-

amples on finite fields. And then I will do one or two videos on problems.

Thank you.


