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Splitting fields

Let us continue now, in this video I am going to introduce a very important notion called

Splitting fields. So, what I will do now is.
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Let F be some field and let us choose a polynomial f in the polynomial ring over capital

F. Let f be a polynomial in capital F X. We say that so, this is an important definition, we

say that f splits completely in an extension field K of F, in an extension field K of F so,

this is the terminology, we say that it splits completely in an extension field K of F.
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If f can be written as a product of linear or degree 1 polynomials in the polynomial ring

over the bigger field, linear means degree 1; linear polynomials means degree 1 polyno-

mials, ok.

So, we say that it splits completely; that means, all the way up to degree 1. So, for exam-

ple, X squared plus 1 which is a polynomial in rational numbers does not or let us say

splits completely in C right because, X squared plus 1 can be written as X plus i times X

minus i where, i is in C. It is also splits completely or rather I will right over C over; so, I

should just slightly modify this, splits completely over an extension field capital K, if

that happens splits completely over Q adjoined i also. Because, we do not need all of

complex numbers right for the splitting, we just need i. 

On the other hand, it does not split completely over Q, because it is not a product of lin-

ear polynomials over Q, it is irreducible and you cannot factor it into linear polynomials.

It does not even split completely over R also, right. So, the base field is extremely impor-

tant, it is over the base fields are splitting completely or not make sense.
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On the other hand, X squared minus 1 which is a rational polynomial splits completely

over Q itself right, because X squared minus 1 is X plus 1 times X minus 1 right and this

is actually a splitting in the polynomial ring over Q here this is the splitting over the

polynomial ring over Q i, ok. 

So, splitting completely means, splitting as a product of linear factors in other words,

what we are saying is that f has all the roots in that field. Here X squared plus 1 has 2

roots but, not in Q only in Q i, you have to go at least Q i. So, it is a field, we say that a

polynomial splits over some field, if it has all the roots there, we have to be careful about

what all the roots means what we really mean is that it is written as a product of linear

polynomials ok. 

So, what I want to start with is we want to say that it always; there is such a field always.

So, proposition, let F be any field yeah; so, actually before I read the proposition, let me

do the main case of this as a separate remark.
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So, let us say F is a field and let f X be in capital F X be an irreducible polynomial that is

irreducible of positive degree. So, degree f is positive. Then, f is a maximal ideal in F X,

right. This is something that we have seen many times before, if you have the polynomial

ring over one in one variable or a field, the ideal generated by a irreducible polynomial is

a maximal ideal. 

So, let K be the field F X modulo f then, what we want to say is that there is a very sim-

ple point but, it is an extremely important point then, K is a field extension of F; K is a

field extension of capital F, in which f X has a root namely X bar, ok. So, let me explain

this, what is the explanation for this.
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So, the reason so, this might not look like a field extension a priori but, it is in fact, a

field extension, that is because remember F always sits inside F X, right. So, there is an

injective map from F to F X and now what we are doing is F X mod the polynomial the

ideal generated by the polynomial f and that is K. 

This of course, is not injective, not 1-1 right that is because, the polynomial f goes to 0

here. So, that is not injective but, the composition this is a field homomorphism right,

this is a field homomorphism. Because, the first one is a ring homomorphism, the second

one is a ring homomorphism; the composition is a ring homomorphism. A field homo-

morphism is really nothing but, a ring homomorphism between two fields. F and K are

fields, it is a field homomorphism.

And, as such if you call this phi, phi is injective right. In fact, phi can phi of a is actually

a for all a and k, all a in F. In fact, phi of a is equal to a for all a in F, because where does

so, if you just tress the maps here, small a goes to small a right. It goes to itself as a con-

stant and then this goes to a bar but, I am going to identify that with a.

So, we think of F as a sub field of K. Really very to be very precise F is isomorphic as a

field to the image which is a sub field of K and we are identifying F with that image. So,

we can think of F as a subfield of K. So, K is a field extension in other words right. What

is a field extension? It is simply as field containing this field that is the first statement, it

is a field extension of K F in which f X has a root. 



Now, what is X bar? Just to be more familiar to you, I am going to think of the image of

X as alpha. So, denote X bar by alpha. So, then what is f alpha? What is f alpha, f alpha I

claim is 0 because, f alpha is equal to f of X bar but, then this is same as f of X whole

bar. Because, thus the map here sends the second map takes a polynomial and sends it to

its residue, which is simply replacing X by X bar but, f X bar is 0 ok. So, this is ex -

tremely important, this is a very important observation, ok. 

So, in some sense there is a god given procedure to obtain a bigger field where any re-

ducible polynomial has a root. All you need to do is go modulo the ideal generated by

that irreducible polynomial, because that ideal is a maximal ideal, the quotient ring is in

fact a field and the residue of X is a root of the polynomial.
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So, to illustrate this what we do; let us for example, consider X cubed plus 2, ok. This is

irreducible, this is for you can see this in many ways for example, Eisenstein criterion

shows this. So, what do we do, we take Q K to be, Q adjoined X cube plus 2 right, this

by the observation I made earlier is a field extension. Because, rational numbers are not

really disturbed in K, only X becomes X bar but, rational numbers under this composi-

tion of these maps are unchanged. 

So, these are field extension and X bar here satisfies right because, if you think about

this, K is Q X modulo X cube plus 2. So; that means, image of X here is X bar but, X bar

cubed plus 2 goes to 0, this is X bar cubed plus 2. X cube plus 2 goes to 0, which is X



bar cube plus 2; that means, X bar is a root of f, which was the polynomial I started with,

it is a root of f, f is X cube plus 2. So, X bar is a root of f.

So, then we forget all this and think of X bar as alpha and we say that is a root of f in an

extension field K of Q, ok. This is the illustration of the procedure that I described here.

So, the upshot is for every irreducible polynomial there is a natural field extension in

which the irreducible polynomial we started with has roots. Now, this process can be

generalized to show that there is always a large enough field where every polynomial has

all the roots, more precisely every polynomials splits completely.
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So, now let me write the proposition that I was writing earlier. The proposition says, let F

be a field and let small f be a polynomial over capital F and no longer assuming it is irre-

ducible, then there exists a field extension K of f, sorry K of capital F, such that small f

splits completely over K.

Remember, I defined the notion of splitting completely in an extension field; that means,

the polynomial splits or written is written as a product of linear polynomials, the remark

above this proposition showed that for every irreducible polynomial there is an extension

field, where the irreducible polynomial has a root. Now, I am saying that for every poly-

nomial you can construct a large enough field where the polynomial splits completely.

The idea is that we are going to induct on the degree of f, small f, ok.
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So, degree of f is 1 means what; that means, f already splits completely; f is already a lin-

ear polynomial; that means, it splits completely over capital F itself. So, take K equal to

F. The goal of the proposition is to exhibit a field extension over which f small f splits

completely, if degree 1 then, all we can just take it to be the best field itself. 

Now, let us say degree f is at least 2; now, we know since F X is a UFD, f small f can be

factored, uniquely has a product of irreducible polynomials right, this is the consequence

of F X being a UFD. So, what we can do is let g be an irreducible factor of f, in capital F

X. Let it be an irreducible factor of f in capital F X. So, now, by the process described

above, there exists a field extension K of F, let us say F 1 of F, I want to keep K as the fi-

nal field I get. So, I call this now F 1, there exists a field F 1, field extension F 1 of F in

which g has a root, say alpha. 

So, just to recall how do we construct such an extension field? We simply take F 1 to be

F X modulo g X, it is an extension field of F and X bar is a root of g because, g is a irre-

ducible polynomial F 1 is a field. So, alpha is a root of f also right, this is clear because, f

of alpha is g of alpha times h of alpha right, g is a factor of f, so; that means, f is g h. So,

f alpha is g alpha times h alpha which is 0 because, g alpha is 0. 

So, now, we can write we can so, note that since f alpha is 0, X minus alpha divides ok,

this is something I have done earlier when I talked about rings, ring theory part of the

course. If you have f alpha is a 0, f alpha is 0; that means, alpha is a root of a polynomial;



that means, X minus alpha is a factor of f x. Because, you can always divide by X minus

alpha and the remainder is a constant because, X minus alpha has degree 1, but, when

you plug in alpha, f alpha becomes 0, x minus alpha becomes 0 so, the remainder is 0.
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So, we can now consider F 1 to be F X divided by X minus alpha, this is in F X. F 1 X

rather because, alpha is only in capital F 1 right, this division is not necessarily true in

capital F X but, it is true in capital F 1 X. So, replace F by F 1 and small f by small f 1.

Since, degree of small f 1 is strictly less than degree of small f, we proceed by induction,

remember we are inducting on the degree. So that means, for any polynomial whose de-

gree is less than degree of f over any field you can construct a large enough field in

which the polynomial splits completely. 
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So, we can go from F to F 1, here we have F, here you have f equals X minus alpha times

f 1 and finally, we get from this is induction step f 1 splits completely. So, f 1 splits com-

pletely in over capital F, capital K rather this means, f splits completely over capital K

right because, what is f? f is just X minus alpha times f 1. So, the additional term in f is

already linear. So, if the f 1 is the product of linear polynomials over capital K so, is

small f.

So, f is also going to split  completely over capital  K. So; that means, we have con-

structed a polynomial a larger field over which you have the polynomials splitting com-

pletely ok. This is a very useful construction for us, this tells us that a given polynomial

may not have roots over a base field, lots of polynomials do not have roots in Q. But, you

can always construct a bigger field, where the polynomial will have roots, not only will it

have roots but, it will split completely as a product of linear polynomials. 

So, now, let me define this very important notion and there is a point of this video, let

capital F be a field and let small f be a polynomial over capital F. A splitting field; a spit-

ting field of small f over capital F, again this entire phrase is important for us. A splitting

field of small f over capital F is an extension field K of F such that two conditions, f

splits completely over the bigger field over capital K.
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Say f can be written as X minus alpha 1, X minus alpha 2 remember splitting completely

means, it is a product of linear polynomials and they are all in capital K. So, it is a prod-

uct of linear polynomials over capital K and capital K must be generated by these roots,

it should not have any unnecessary elements, ok. So, it is exactly the splitting field. 

So, now, the definition is now the proposition is every polynomial has a splitting field,

let F be a field and let small f be a polynomial over capital F, capital F then small f has

the splitting field over capital F, what is the proof?
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By the previous proposition, there exists a field extension K of F over which f splits

completely, right. So, this is the first condition for the splitting field, small f should split

completely over the bigger field but, there is also the second condition. So, now, in the

previous proposition we did not take care of the second condition. 

Now, we are going to do that so, say small f is it splits completely right. So, we take X

minus alpha 1 times X minus alpha 2 times X minus alpha n with alpha i in capital K. It

is not true that capital K is the splitting field of small f because, the second condition

may not be satisfied but, no problem it is very simple to get a splitting field. Simply is

define L to be capital F adjoined alpha 1, alpha 2, alpha n, this is of course in K. So, we

have constructed a field in the previous proposition K and F is our base field and now I

am defining a new field only using the required elements alpha 1 to alpha n. So, then L is

a splitting field of small f over capital F, right. 

Now, this is clear because, f splits over L also, small f splits over L also because, this

factorization which was apriori defined over capital K X also holds in L X right. Be-

cause, what is the meaning of this holding in L X, all we want is that the coefficients of

this polynomial are in L but, it was constructed so that, all the alpha is are in L. So, this

holds in L x; that means, small f splits over capital L and by construction the second con-

dition holds, L is equal to f alpha 1 to alpha n. So, L is a splitting field of small f over

capital F. Let me write another nice proposition, before doing some examples.
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Let capital F be a field and let small f be a polynomial over that field. Let K be a splitting

field of small f over capital F. A quick remark here which I will not write and I will not

use this much but, splitting field is essentially unique. Meaning, if you have two splitting

fields of the same polynomial over the same base field, you can exhibit an isomorphism

of the two splitting fields over the base field. 

So, often when you read books, they talk about these splitting field and that is a state-

ment which is valid up to isomorphism, but I am not going to use that a lot. So, I am go-

ing to keep calling this a splitting field of small f over capital F. Then K is a finite exten-

sion of capital F. 

So, splitting fields are automatically finite extensions. So, this is very simple because, by

definition K is F alpha 1, alpha 2, alpha n right. So, this sits inside a tower like this. So,

this is generated by alpha n over this, this is generated by alpha n minus 1 over this and

all the way up to F alpha 1 let us say alpha 2 alpha 3 to F alpha 1 alpha 2, F alpha 1 to F.
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So, I have broken up this into a series of field extensions, where each one is generated by

a single thing. So, this is generated by alpha n, this is generated by alpha n minus 1, the

next one is generated by alpha n minus 2. This is generated by alpha 3, this is generated

by alpha 2, this is generated by alpha 1. 



But, now by what we did in a previous video, if you have an algebraic element and you

have an extension generated by this, this is finite right, this is finite, similarly this is fi-

nite, this is finite. Everything in this tower is finite, right. So, everything is finite, the en-

tire thing in other words because of the multiplicative property of degree of field exten-

sions, K over F the degree will be product of this times, this times, this times, this times,

this. So, this is finite. So, that is the proof ok. 

So, I have done this pictorially but, I hope it is clear, if you have a splitting field, it is au-

tomatically a finite extension. Let me now do a few examples to end the video and we

will continue from the next video.
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So, just I will do three examples. What is the splitting field of so, the question is to find

splitting fields. So, I will give three examples, find splitting fields. So, let us take capital

F to be Q and small f, in all examples actually F is Q. So, I will change the polynomial

only. So, X cube minus 2, what is the splitting field here? So, here K can be taken as Q

adjoined cube root of 2 and omega. 

This is something that came up before, there are 3 roots here, actually it can be written as

it has to be written as because, these are the 3 roots and this polynomial does split com-

pletely over this right because, it is X minus cube root of 2, times X minus omega cube

root of 2, times X minus omega squared cube root of 2.



But, it is not necessary to list all 3 elements here because, if cube root of 2 and omega

cube root of 2 are there in this field, their ratio is going to be there; that means, omega is

there but, once omega is there and cube root of 2 is there, omega cube root of 2 is there,

omega squared cube root of 2 is there. So, this is sort of a minimal generating set. So, I

can describe this as the splitting field and what is its degree. So, let me not, ok.

So, I will postpone that degree calculation to later, let me do one more example, X power

4 minus 1, what is the splitting field? Here what are the roots, let us say in C. So, we

have to see for Q, there is a god given field over which all polynomials have roots, that is

related to the fact that C is algebraically closed, which I will formally mention in a later

video. So, what are the roots in C, they are 1 minus 1, i minus i. 

So, the splitting field is simply given by Q adjoined, 1 minus 1 i minus i because, you

have to add all the roots, but of course, it is not necessary to add 1, minus 1 that are al-

ready in Q that is silly to write like that and in fact you also do not need to write minus i,

because, minus i is already there, if once i is there. So, this is the splitting field you ad-

joined one of them, that is enough.
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In the first example you have to adjoin two elements to Q to get a splitting field; here

you have to adjoin only 1; final example for this video, X power 4 plus 1. So, note that,

roots here are roots of X power 4 plus 1 are 8th roots of 1 because, remember if alpha



power 4 plus 1 equal to 0; that means, alpha power 4 equal to minus 1; that means, alpha

power 8 is equal to 1. 

So, alpha power 8 is 1 and alpha power all the roots must satisfy this condition but, some

root cannot be a fourth root of unity, there must be a primitive 8th root of unity which is

a root of this. So, a root of X power 4 plus 1 is a primitive 8th root of 1. So, for example,

we can take this to be a e power 2 pi i by 8, which is e power pi i by 4, which is cosine pi

by 4 plus i sin pi by 4. So, this is 1 plus i root 2, right.
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So, this is a root of 1 plus i by root 2 is a root of X power 4 plus 1, what is another root? i

is also a root. That is clear right because, oh sorry i is not a root. So, this is a root, so all

the roots are primitive roots of unity and one of those primitive roots of unity is this,

primitive 8th root of unity.

Let us call this alpha then, what is alpha squared, alpha squared is actually i because, you

can check that by multiplying this because, alpha squared is 1 plus i whole squared by 2,

this is a 1 plus i squared plus 2 i by 2. So, this is this will cancel and you get i ok. Also it

follows from the fact that, e power 2 pi i by 8 whole squared is e power 4 pi i by 8,

which is e power pi i by 2. So, which is i. 

So, alpha squared is in K, whatever is our potential splitting field contains i and it con-

tains i plus 1 plus i over root 2. So, 1 plus i by root 2 is there, i is in there; that means, 1



plus i is also there right because say K certainly contains Q. So, we are looking at exten-

sions of Q, 1 is there, i is there, 1 plus i is there; that means, the ratio of these two is

there, 2 2 is there. So, what I want to say is that K is in fact, equal to; so, certainly these

two together imply that K contains Q adjoined i comma root 2 right. But, in fact K is

equal to Q adjoined right that is because, 1 plus i by root 2 is already in Q adjoined i

comma root 2, this means all 8th roots of unity are in Q adjoined i comma root 2. 

See the roots of unity from a cyclic group, under multiplication and a primitive root of

unity is a generator of it. So, once one of those things generators is there, its powers will

be there; that means, all other roots are also there. 
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So, once all roots are there, all 8th roots of unity are there; that means all roots of X

power 4 plus 2 are also in Q adjoined i comma root 2, ok. So; that means, Q adjoined i

comma root 2 is a splitting field of X power 4 plus 1 over Q, ok. What I have said here

just to summarize quickly, I am interested in the splitting field of X power 4 plus 1. We

first observed that all roots of X power 4 plus 1 are roots of 8th roots of 1 and one of

them has to be primitive 8th root of 1. 

So, I am taking that to be 1 plus i over root 2, that must be a root, and what I noted is i

and root 2 must be in the field but, once you put i and root 2 every other root automati-

cally can be expressed as a rational polynomial in i and root 2; that means, it contains all



the roots. And if you remove either of i or root 2, you will not get all the roots. So, Q ad -

joined i and root 2 is a splitting field of X power 4 plus 1 over Q. 

So, our picture is Q adjoined i comma root 2 containing Q i of course, it contains two

fields, Q root 2, Q i and both are extensions of Q. This is a splitting field of X power 4

minus 1; this entire thing is a splitting field of X power 4 plus 1. So, let me stop the

video here, the last example I went over fast but, please watch the video again if you

need to and ask questions in the discussion forum, if you have any doubts.

Thank you.


