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Problems 9

In the last video I did a few problems on rings and let us continue. Now, I am going to do

some more problems in this video.
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In the third problem now, last time we did two problems. Let us introduce a very impor-

tant construction in ring theory, this is this will be useful if you continue studying ring

theory. So, I will introduce it to you and do some simple properties. So, let R be a ring

and let me remind you again that in this course, a ring for us means a commutative ring

with unit.

Let S be a sub set of R, I am not asking for it to be a sub ring, only a sub set. So, we say

that S is a multiplicative set or a more suggestive name is multiplicatively closed or S is

multiplicatively closed. So, that is the another term for this, if the following happens, if

two things happen; one is in S the identity element multiplicative identity element of R is



in S, the other is if a and b are two elements in S, for any ring elements that are both in S

their product is in S. So, it is multiplicatively closed, the as a name suggests if two things

are in S it is product their product is also S, that is all no other condition.

So, immediately you know that for example, it cannot be an ideal if it is an ideal it has to

be the unit ideal, because one is there, if this property if it is an ideal also, then it must be

equal to R. So, most of the time these are not ideals or any kind of closure under addition

will not be there. So, a quick example to you so, if R is Z, you can take S to be odd num-

bers right, S 1 is odd number.

So, 1 is an odd number product of 2, odd numbers is odd number. So, this is multiplica-

tive, S 2 even numbers, this is not multiplicative, because even though the product condi-

tion holds, if two even numbers multiply to an even number, but 1 is not there. So, that is

an important condition for us. So, it is not multiplicative.
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Let me just one more example; numbers not divisible by 3 or this is multiplicative. This

requires a little bit of thinking, but you can show that this is a multiplicative set, because

1 is in this set, because 1 is not divisible by 3, it is in the set whereas, and if two numbers

are not divisible by 3 for example, 5 and 7 are not both divisible by 3, 5 times 3 7 is not

divisible by 3. Here, the important fact is 3 is a prime number.



If 3 does not divide a, 3 does not divide b, then 3 does not divide a b. Remember, that is

the property of prime numbers, because if 3 divides a b, 3 divides either a or b, 3 divides

b. So, this is multiplicative in general, we can define S 4 to be numbers not divisible by;

not divisible by a prime p.

This is multiplicative right, because exactly the same idea as before 3 is a prime number,

you can replace it by any prime number. What about numbers not divisible by 4? Say

this is not multiplicative, because 1 is there, that is fine, but 2 is there in S 5, but 2 square

is not in S 5, because 2 is not divisible by 4; however, 2 squared is 2 times 2 is divisible

by 4. So, it is not in S 5. So, this is why you need a prime number in this case ok. So, 4 is

not prime. So, this is not going to work.
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More generally if you have an integral domain, you can take S to be R minus 0; so, all

non-zero elements of R right. This is multiplicative also, because you multiply two non-

zero numbers the product is non-zero. So, if two elements are in R minus 0 the product is

also in R minus 0, this is multiplicative. Remember, that this will not be a multiplicative,

if R is not an integral domain, there will be two non-zero elements, whose product is 0.

So, that will not be multiplicative one, more example I will do before continuing. Let us

take Z X, let us take f to be all polynomials in Z X such that f of 0 is not 0. This simply

means the constant term is non-zero right, because f of 0 is the constant term of any



polynomial suppose it is not 0 1 is certainly in S, because constant of 1 is 1 which is not

0.

If f and g are in S, then f of 0 times g of 0 is non-zero, because f of 0 is non-zero integer

g of 0 is a non-zero integer; that means, the constant terms of f and g are non-zero inte-

gers, their product is non-zero. So, f g is in S ok.

So, this hence S is multiplicative. So, this is another example of a multiplicative set. So,

these are some examples of multiplicative sets. Now, the point of the problem is not this,

the problem is to show that there is a new ring.
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We can construct a new ring. So, actually now I will assume that. So, I should have said

this before, assume for simplicity this can done in general, but as a first introduction to

this we can assume that R is an integral domain, from now on in this problem, we will

assume that R is a integral domain. We can construct a new ring, which we denote by S

inverse R, where, which contains R and where every element in R, in S is a unit. So, I

will explain what this means. 

So, more generally there will be a function from R to S inverse R, which is injective, im-

age of an element of S is a unit in S inverse R. So, this process is called localization and

what we are doing is; we are forcing every element of S to be a unit. In general of course,

when you take a multiplicative set the elements are not units in this examples you can



see that odd numbers are not units 3 is not a unit in S 1 so; however, we can construct a

new ring where it becomes unit.
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So, we define S inverse R to be. So, please keep in mind, when I am doing this the exam-

ple of how we construct rational numbers from integers, we have integers and we take

ratios in S inverse R, we take ratios where denominator is in s. So, simply it is defined

like this a by s. They are just symbols at this point a in R a and s are both in R to begin

with and s is also an S. 

So, we define this and as equality will be a by s will be considered equal to t if a t is

equal to b s, just like we have two rational numbers 1 by 2 is equal to 2 by 4, because 4

equal to 4 the same idea I am applying. So, two ratios are considered equal, if their cross

products are equal. This is the set, addition on this again, we are exactly mimicking the

construction of rational numbers.

So, addition is a by s plus b by t is at plus bs by st. Here is where the multiplicative prop-

erty of S is important s and t are in S, because and hence their product is in s. So, this is

in S inverse R in my notation. So, multiplication is also defined in the same way, a by s

times b by t is a by b times s t which is in S inverse R. So, important two point is if s t R

and s s comma t is in S, s t is in S. So, that is what we are using one can check that this

has all the required properties.



0 element is 0 by 1 or 0 by any other element, multiplicative identity 0 element remem-

ber is the additive identity, multiplicative identity is just 1 by 1 1 is an s remember. So,

we can put 1 in the denominator.
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So, with this and this I will let you solve as an exercise this part I will not do, with the

above operations S inverse R is a ring show that now, the problem is show that there is a

function, there is a ring homomorphism phi from R to S inverse R such that. So, this is I

can think of the first problem there on this such that phi of s is a unit in S inverse R for

all s in S ok. So, how do we show this solution? The map is very easy to define. So, de-

fine phi from R to S inverse R by sending phi of a to be phi of a to be a by 1. So, why is

it a ring homomorphism?
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What is phi of 1? This is 1 by 1, which is the 1 in S inverse R. So, this is what is phi of a

plus b? This is a plus b by 1, which is a by 1 plus b by 1 which is phi of a plus phi of b.

So, this is what is phi of a b? This is a b by one this is a by 1 times b by 1. Remember,

the definition of multiplication at addition in this ring, a by s plus b by t is a t plus b s by

s t a by s times b t b by t is a b by s t. So, this is phi a times phi b ok. So, this is also so,

this shows that phi is a ring homomorphism I am leaving a verification that phi is a S in-

verse R is a ring to you. So, this is an exercise for you.

Now, suppose small s is in capital S, then phi s is s by 1; I want to show it is a unit note

that 1 by s is an element of phi inverse R S inverse R, because s is an element of capital

S. So, this implies S by 1 is a unit. So, this is the other statement here that we are asked

to show. So, phi of S is a unit for every s in S. So, also show that I should also left it

should have written it here show that phi is injective phi is injective.

Actually, I should have said this so, maybe I should write it here most of the time we are

going to assume that S does not contain 0, some where I wrote this also assume that oth-

erwise, I get into problems assume that 0 is not in S. So, assume that every where 0 is not

an S. So, show now that phi is injective.
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So, why is that phi is injective, because suppose, phi of a is 0 for some a in R this implies

a by 1 is 0, because that is the meaning of phi of a phi of a is a by 1. So, a by 1 is 0; that

means, 0 can be thought of a 0 by 1; that means, actually is yeah so, this is 0 element is 0

by 1 so; that means, a is 0 ok. So, to do well define so, actually one think that I did not

that is hidden in this exercise, you want to show that this is well define, this addition, be-

cause a by s may be equal to a prime by s prime, but then when you replace that by a

prime by s prime you want to check that what you get is same.

So, hidden in this exercise is you are also required to check that this addition and multi-

plication are well defined. So, that is hidden in here, only after you check that they are

well defined you can start verifying that the ring axioms are satisfied. So, just to may be

start the verification, I will let you, I will do the following. So, remember, what we are

doing is a by s plus b by t is at plus bs by s t this is the definition, but suppose, a by s is

equal to a prime by s prime that can happen right, because rational numbers have various

representation 1 by 2 is same as 2 by 4. So, then we want to check that a prime by s

prime plus b by t is equal to a by s plus b by t.

This is required for well definiteness, but what is this is a prime t plus b s prime by s

prime t, this is and the question is whether these are equal a t plus b s by s t.
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Remember, this happens if and only if a prime t plus b s prime times s t is equal to a t

plus b s times s prime t this is what we want to check, but we are given this a s by a by s

is equal to a prime by s prime; that means,. So, we are given this; that means, a s prime

equal to a prime s so; that means, this we know and now, you can just expand this out

and you see that using this fact, we can get this fact. So, we you check this. All you need

to do is multiply this out and cancel for some common terms and you will get what you

want so, that I will leave you to check. So, this shows that it is well defined.
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Now, the second part of the exercise I want to check is let us take R to be Z and S to be Z

minus 0; this is our model for the localization, then we have to verify that actually what

we get is S inverse R is equal to Q ok. This I will not do all the details, but it is clear

what the map should be send S inverse R to Q in the following way a by s should go to a

by s.

Remember a and s are integers here right and s is not 0. So, s a by s is actually a rational

number is a ring and so, this map is a ring isomorphism. So, the more general process

that we define now, for any integral domain and any multiplicative set in it, contains with

in it as a special case, the well known construction of rational numbers from integers. So,

this I will leave as an exercise for you, not very difficult. So, that is not surprise, it is not

surprising that it generalizes the well known construction of rational numbers from inte-

ger.
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So, let me do now one more problem and then we will connect it to the localization this

and this is a very simple problem. So, let us write it here, let R be a ring, let I be an ideal

of R such that if a is in R and a is not in I, then a is a unit, show that I is the only, I is a

maximal ideal and it is a only maximal ideal and it is the only maximal ideal of R.

So, such rings are called local rings. So, it is an ideal it is a maximal ideal and it is the

only maximal ideal. So, let us prove this, very easy. First of all I is maximal, why? Sup-

pose, I is contained in J and it is not equal to J. So, choose a in J a not in I right, if J is



strictly bigger ideal, it must contain an element which is not in I, but by hypothesis, what

is a hypothesis? Every element of the ring which is not in I is a unit. So, a is a unit, but

then one belongs to J because a times something is 1 a is in J. So, 1 is in J. So, J is R.

(Refer Slide Time: 20:16)

So, any ideal that strictly contains I must be equal to R. The next part is I is the only

maximal ideal. Why is this? Suppose, J is any ideal of R implies I claim J is contained in

I. I claim that every ideal of proper ideal of R is contained in I, why is this? So, if sup-

pose, J is not contained in I; that means, there exist a in J, a not in I by definition if J is

not contained in I; that means, J is not a sub set of I, it must contain something that is not

in I.

By the above argument; that means, J is in R ok, but we are assuming J is not in R. So,

every proper ideal of R is contained in I, but this means I must be the only maximal ideal

right. Hence, I is the only maximal ideal, why is this? This is, because if there is another

maximal ideal, we known it is a proper ideal, but then it must be contained in I, but a

maximal ideal cannot be contained in I, a bigger ideal so, unless it equal to I. So, it is

equal to I. So, in no other maximal ideal can exist. So, there is an important definition for

you a ring R is called a local ring.
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So, this notation is related to algebraic geometry, where this is such things are studied, R

is a local ring if it has only one maximal ideal. Every ring has a maximal ideal by Zorn’s

Lemma we proved earlier. If there is exactly one maximal ideal, it is called a local ring.

What are examples of this? So, this is part of the exercise that I will do and in fact, I will

leave many details to you.

Let us take R to be Z and S to be the set of odd numbers in the first beginning of this

video. We showed that this is multiplicative show that S inverse R is a local ring, using

the previous exercise. Why is this?
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So, first of all consider the following set I in S inverse R a by s in R such that a is even.

So, one can check that I is an ideal of S inverse R. So, it is a sub set of S inverse R it is.

In fact, an ideal why is that? 0 is there, if you add two things a t plus b s by s t, if a is

even and b is even, a t plus b is also even. So, this is an I similarly, if a by s times any el-

ement. So, in this case both are in I now, suppose this is in R S inverse R and this is in I

this is a b by s t, but if b by t is in I means b is even. So, a b by s t is also an I, because if

b is even, a b is even.

So, this is an ideal and now, take an element that is not in I. So, let a by s a by s be in S

inverse R and not in I then by definition of I a is odd right. So, the here I suppressing

somethings, there could be several represent representations of a by s, never the less for

all of them the numerator will be even or for all of them numerator will be odd, because

for example, in this example what is an example of things in I. 

So, 2 by 7 is in I right, because a numerator is odd, but 2 by 7 may be also written as 6

by 21 by multiplying by three both sides, but even if you use the representation 6 by 21,

the numerator is even. You can never write this with an odd number on top divided by

another odd number, because 2 by 7 cannot be equal to another odd number by odd num-

ber, because when you cross multiply one will be even other will be odd. So, which can-

not be, which cannot happen.



So, this is well defined I am suppressing that here. So, you can ask in the discussion fo-

rum any questions about this or work it out by yourself, but this is a well defined ideal

well defined set. So, now, if somethings is not in I; that means, a is odd, because if a is

even then it will be an I so; that means, s by a is in S inverse R right, because if a is odd

we can consider s by a so; that means, a by s times s by a is 1, this means a by s is a unit

and by the exercise that we just did.

(Refer Slide Time: 26:01)

S inverse R contains exactly one maximal ideal right, because we have found an ideal I

and also it is not equal to R, I should say also I is not S inverse R, because for example, 1

by 1 is not in I not in I yes, it is a proper ideal with the property that everything outside

it. If you take a by a that is not in it is a unit and by the problem that we just did if you

have a ring and an ideal proper ideal in that ring such that everything outside it is an unit

that proper ideal is the only maximal ideal of that ring. 

So, S inverse R is a local ring. So, this an example of a local ring. Also another example

is every field is a local ring, because field has exactly one maximal ideal namely the 0

ideal and just to finish this Z is not a local ring, ring of integers is not a local ring this is,

because it has several maximal ideal 2 Z 3 Z 5 Z and so on. So, I am going to now just

do one final exercise to list some of the example of rings that we have studied. So, the fi-

nal example that I want to do may be this the fifth example problem final problem, deter-

mine if the following rings are Noetherian.
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Remember, Noetherian means ascending chain condition on ideal holds or every ideal is

finitely generated, integral domain which I denote by I D, UFD or PID, determine if the

following rings have this property. So, let me just this is mainly to list the summarize the

rings that we have studied. So, I may forget some of them, but I will try to do as many as

I can remember Z so, Noetherian. 

So, I will Noetherian yes, integral domain also yes right, because this is our first example

of integral domain we have show that it is a PID. So, hence it is a UFD. So, it has all the

properties. If you take Z X, this also all four properties; it is a Noetherian ring, it is inte-

gral domain, it is UFD, it is PID, any field all four properties.
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So, these are all simple examples right. A field is Noetherian, it is integral domain; obvi-

ously, it is PID UFD, it has only two ideals. So, there is no problem there what about if

K, if R is an integral domain and R is Noetherian, what about R X? This is an arbitrary

ring which is integral domain and Noetherian, then this is Noetherian right this is also in-

tegral domain, you can check if, because multiplication of two non-zero polynomials will

give you a non-zero polynomial, this is ok.

But what about UFD or PID that is not clear unless you assume similar conditions for R.

So, R is UFD suppose I assume then this is also UFD. R is integral domain Noetherian

UFD, then it is a UFD, but if R is PID, R X is not necessarily a PID right, because so,

take it, R which has all the four properties that we are interested in Noetherian ID inte-

gral domain UFD PID, polynomial ring in one variable inherits three of those properties

it is Noetherian integral domain UFD, but not necessarily PID.

What is a example? The simplest example is Zx Z is Noetherian integral domain UFD

PID, but it is not a PID. So, this is the property of being a PID is not inherited when you

are attach a variable.
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So, a again this properties will carry over to polynomial rings in any number of variables

finitely  many.  These  are  Noetherian  ID UFD of  course,  not  necessarily  PID,  as  we

showed in the one variable case itself and these are important theorems right this is Noe-

therian part is Hilbert basis theorem, ID part is easy, this is just a simple calculation and

UFD is also required proof.

What we have done is for R equal to Z and in those videos I said, proof more or less car-

ries over to any arbitrary UFD ok. So, this is let us say b c d. Let us do one more exam-

ple some more examples what about Z adjoined square root minus 5? This is Noetherian

I D, but not U F D. If you recall in the videos when we discussed UFDs, we showed that

this has factorization, but it terminates, but it is not unique, 6 can be written in two dif-

ferent ways as product of irreducible elements. Once it is not be UFD, it cannot be PID,

because a PID is a UFD.
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Next example ok, some of these are not immediate one has to check. So, what I will let

you do is this is Noetherian, because this is a polynomial ring in one variable three vari-

ables modulo an ideal. So, image of a Noetherian ring is Noetherian and the ring Z X Y

Z is Noetherian. So, when you quotient by this the image of Z Z Y Z; so, it also Noether-

ian ID requires a proof and let me not do that for now. And, we can discuss it in may be

discussion forum this is an irreducible polynomial that one I has to show you cannot

write this is the product of two polynomial. 

So, it is irreducible. So, it is a integral domain it is not a UFD and the reason is X bar y

bar is equal to z bar squared. So, this is these are two different factorizations. So, these

are two different factorizations. So, this is not UFD and hence, not a PID. So, one has to

check this, what really one has to check is X by X bar y bar z bar are three distinct irre -

ducible elements. That is not that difficult to check that I will leave it for you g Zxy mod

X Y. 

So, this is Noetherian, because again Z X Y is Noetherian by Hilbert basis theorem, Z X

Y mod XY is an homomorphic image of Z X Y, because there is the unique surjective

map there is a natural surjective map from Z X Y to Z X mod XY and image of Noether-

ian ring is Noetherian. So, this is Noetherian, but this is not a integral domain and hence

now, not UFD PID also, because UFD PIDs are D stands for domain.



So, something that is not a integral domain cannot be UFD or PID, why is it not in ID,

because X bar and Y bar are not 0, but X bar Y bar is 0. So, when I write bar I mean sim-

ply the images under the natural map from Z X to Z X Y to this the residence of X and Y

what about. So, the next example so, this is a example of something that not even inte-

gral domain.
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So, one more example: so, the ring that we consider X inverse R S inverse Z where S is

odd integers, the previous problem that we considered. Here, S inverse R 1 can check.

So, S inverse R is Noetherian see, there is only one ideal here, right one maximal ideal

and actually that is I am not saying that there is only one ideal, there are many ideals, but

only one maximal ideal and one can check that every ideal actually, I have proved that

there is only one ideal only maximal ideal check that there is only three ideals 0, the

ideal I from last problem, which is a by s, where a is even and s is of course, odd and S

inverse R itself. 

There  are  only three  ideals,  these  are  the  three  ideals.  So,  now, Noetherians  can be

checked, because one equivalent condition for Noetherian S is every ideal is finitely gen-

erated. Here of course, there are only three ideals they are all finitely generated I can be

written as the ideal generated by 2 by 1, 2 by 1 generate set. So, one can check this is an

exercise for you. So, it is Noetherian it is a integral domain and it is a PID actually, be-

cause every ideal is principal here, there only three ideals. 0 is certainly principle gener-



ate by 0, S inverse R is certainly principle generated by S inverse R and I is generated by

2 sorry, S inverse R is generated by 1, I is generated by 2 1. So, it is a PID.

So, it is also UFD and one can check that it is an ID of course, that is required to verify

the deep part in UFD and PID. So, this is an example of another ring, which is Noether-

ian integral domain UFD and PID and let me just give you a final example, where some-

thing which is not even Noetherian. For example, if you take Z adjoined X 1 X 2 infin-

itely many variables, this is not Noetherian ok. The ideal generated by all variables is not

a finitely generated ideal. Similarly, it is though integral domain ok.
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It is integral domain, it is also UFD one can show, but not PID, just like you can show

unit factorization for polynomial in finitely many variables, you can show it for infinitely

many variables, because to determine unit factorization you only look at once specific el-

ement. You take a specific polynomial, it only inverse finitely many variable. So, you are

really working in finitely polynomial ring which is UFD it is certainly not PID, because

you attach two variables it is already not PID.

It is not Noetherian similarly, one more example that we looked at was 2, second power

of 2 fourth power of 2 it is not Noetherian, it is integral domain UFD, it is actually not

UFD, that was one our example right and of course, not PID. It is not a UFD, because we

constructed this ring to show that factorization does not even terminate in this ring ok.

So, in this case it is not even a UFD.



So, these are the examples of some of the rings that we discussed in this a ring theory

part of this course and I wanted to list all of them, because and with respect to the four

properties that we emphasized here; integral domain, Noetherian, UFD, PID. So, I hope

these are clear, please go back and see this video again if you have anything that is not

clear you can ask questions about this. So, this completes the discussion on ring theory;

in the next video we are going to start talking about fields.

Thank you.


