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In the last video, we looked at polynomial rings over the integers, or polynomial rings in

one variable and showed that it is a UFD. In fact, we also commented that with the same

proof shows that if R is a UFD, a polynomial ring over R in any number of variables fi-

nite number of variables is a UFD. In the crucial facts we use were the notions of primi-

tive polynomials and Gauss lemma, and using that we have written any rational polyno-

mial as a rational number times a primitive polynomial and that allowed us to compare

irreducibility over the integers and irreducibility over the rationales. And we ended with

the important theorem which says Z X is a UFD. 

So, today I am going to use those ideas to prove a very important criterion for verifying

that polynomials are irreducible over integers or rationals, and it is called Eisenstein Cri-

terion, ok.

(Refer Slide Time: 01:10)

It is a very useful method to check if a given polynomial is irreducible or not. It does not

always work, but it works often and it is very useful to conclude that, irreducibility here. 



So, let me just go ahead and write the criterion first. Let f be a rational integer polyno-

mial write f as a n X n, a n minus 1 X n minus 1 a 1 X plus a 0. So, since it is an integer

polynomial we of course, know that the coefficients are integers. 

So, now, suppose that that there exists a prime integer there exists a prime integer that

means, a prime number in Z, p such that it satisfies the following conditions, p divides or

does not divide, first let me say p does not divide a n. So, I am assuming whenever I

write like this of course, remember, when we write a polynomial like this we will always

assume that the leading coefficient is nonzero because we will start with the largest de-

grees. So n is not 0. 

So, suppose p does not divide a n, p divides a n minus 1 up to a 0, and also p squared

does not divide a 0, ok. So, this is the assumption. p divides a n, p divide, p does not di-

vide a n, p divides a n minus 1 through a 0 p squared does not divide a 0. So, remember,

these two conditions already imply that n is positive. So, f is non-constant polynomial.

Remember, that we are asking for p not to divide a n and p divide p divides a 0 that

means, a n and a 0 are different, that means, f has at least degree 1. So, it is a non-con -

stant polynomial. 

So, if this happens what is the conclusion? Then we can immediately say that f X is irre-

ducible in Q X, then f X is irreducible in Q X that is the conclusion of Eisenstein crite-

rion not that it is irreducible in Z X. However, if we also know that if f is primitive, if

further f is primitive then f X is irreducible in Z X also, ok. So, this is a good criterion to

prove, so that it  actually uses all  the notions that we developed in the last couple of

videos and it gives us a very useful criterion. 

If there is a prime number satisfying some conditions with respect to the coefficients of

the polynomial, we can right away conclude that its irreducible in Q X. We cannot con-

clude in general that it is irreducible in Z X, but if it is primitive, it is a irreducible in Z

X.
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So, I am going to give a couple of examples before I prove this. So, for example, if you

take X power 3 minus 5 X squared plus 10 X plus 15, right. So, let us take this in the in

polynomial ring over integers. So, this is a, this is an integer polynomial, then p equal to

5 satisfies the hypothesis of the Eisenstein criterion, right. We might even write some-

thing like this.

So, let me write f equals to 2 X cubed minus 5 X squared minus 10 X plus 15. So, it sat-

isfies the hypothesis of the Eisenstein criterion because 5 does not divide 2, a 3 here is 2,

right a 3 is 2, a 2 is minus 5, a 1 is minus 10 a 0 is 15. So, 5 does not divide 2, 5 divides

minus 5, 5 divides minus 10, 5 divides 15 and 5 squared which is 25, does not divide 15.

So, we conclude that f is irreducible in Q X, right. This is the conclusion of the Eisen-

stein criterion. 

Since, f is also primitive f is also primitive, right. Why is that? Because. Remember, a

primitive polynomial is a positive degree polynomial with positive leading coefficient

and such that gcd of all its coefficient is 1. Here the coefficients are 2 minus 5 minus 10,

15 gcd is 1, right. There is no number greater than 1 that divides all these coefficients.

So, f is primitive, and hence f is also irreducible in Z X. See, this is a very useful crite -

rion as you can see. It may be very difficult in general to conclude irreducibility of poly-

nomials, in this case we have already just immediately concluded that it is irreducible. 



So, similarly we can take for example, f as let us say 12 X power 6 minus 10 X power 5

plus let us say 20, 50 X power 4 minus third 10 X plus 60, I am just arbitrarily writing

some polynomial. So, again p equal to 5 works, right. Why does it work? Because if you

check 5 it divides all the coefficients other than the leading coefficients, leading coeffi-

cient, right, p does not divide 12, but p divides 10, p divides 5 divides 10, 5 divides 50, 5

divides minus 10, 5 divides 60, 5 does not divide 12 and 25 does not divide 60. So, f is

irreducible in Q X. So, this is, ok. That is immediate conclusion of Eisenstein criterion. 

(Refer Slide Time: 08:33)

What about in Z X? For that you have to ask if it is a primitive polynomial? Is f primi-

tive? It is not primitive, right because f can be written as 2 times, you can factor 2, 6 X 6

minus 5 X 5 plus 25 X 4 minus 5 X plus 30, right. This is not primitive because the con-

tent is not 1, content of f is 2 not 1. So, f is not primitive that means, we do not get that f

is irreducible in Z X because clearly you can see that, this gives you a factorization 2 is

an irreducible element in Z X. So, f can be written as 2 times g, where g is this, right. So,

this is irreducible this is irreducible.

So, f can be written as a product of two irreducible polynomials that means, it is not irre-

ducible. Whereas, this is not a valid factorization in Q X because 2 is a unit in Q X. So,

we this is not a valid factorization in to two proper irreducible divisors, whereas, in Z X

it is. So, f is irreducible in Q X, but it is not irreducible in Z X. So, this gives you an ex-



ample of a polynomial integer polynomial which is irreducible in Q X, but it is not irre-

ducible in Z X. 

(Refer Slide Time: 10:16)

So, now this after these examples, I am going to quickly prove the Eisenstein criterion. It

is not difficult using the theory that we developed in the last few videos. It is not difficult

to now show that, now prove the Eisenstein criterion. So, what we are going to do is con-

sider the natural map ring homomorphism I should say, natural ring homomorphism, ho-

momorphism, phi p from Z X to Z mod p Z X. 

Remember, what is this ring homomorphism? It takes a polynomial and simply changes

the coefficients by the residues mod p. So, given we are, we are given a fixed p, right p is

that fixed phi p, given in the statement of Eisenstein criterion, p is a prime number, prime

integer that divides all the coefficients of f other than the leading coefficients, coefficient

and also p squared does not divide the constraint. So, for that we consider this.

And now, since; what I am now going to do is a simple claim here. If f is reducible, re-

member, I am trying to show that f is irreducible in Q X. If suppose it is not; that means,

if f is reducible in Q X then it is reducible in Z X. So, first I will prove this claim. Let me

comment that in the previous video when we proved that Z X is a UFD, one of the results

we proved was if f is a non-constant irreducible polynomial in Z X that means, it is an in-

teger polynomial and in Z X it is irreducible and it has positive degree, then it is also ir-

reducible in Q X. In this case f is a non-constant polynomial, so if f is irreducible in Z X



it would be irreducible in Q X. So, that this claim is proved already. But I am just going

to give you a direct proof, so that it becomes more clear to you. Even if the previous ar-

gument was not clear, you can follow this, right. This is a more direct argument for this

statement. 

If f is reducible in Q X then it is reducible in Z X. Why? So, write f as g h where g and h

are in Q X. Remember, what is the meaning of being reducible that means, it can be writ-

ten as product of two polynomial of positive degree in Q X. So, both g and h are non-

constants and f can be written like this. 

Now, because of the proposition that we did earlier, every rational polynomial can be

written as its content times, content times a primitive polynomial. Similarly, g can be

written as say g 0, h can be written as d h 0, right. We this is not, now at this point you

are comfortable with this I hope. Every rational polynomial can be written as a rational

number. So, c, d are in Q and g 0 and h 0 are primitive, right. So, I am writing g h as cg 0

and d h 0 respectively. So, we have this.

Now, remember, g 0, h 0 is primitive because g 0 and h 0 are primitive, their product is

primitive like Gauss lemma and f is cd g 0 h 0. So, this must be the unique expression of

f into its product of its content and a primitive polynomial. So, content of f is cd. But re-

member f is a, f is an integer polynomial that is given to us, in the Eisenstein criterion f is

an integer polynomial. 
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This means cd is in Z, right because content is a for an integer polynomial content is an

integer. Content is simply then the gcd of its coefficients. So, cd is in Z that means, f can

be written as g 0 h 0, right. And remember, g 0 h 0 are primitive that means, by defini -

tion they are in Z X. So, they are in Z X that means, here is an irreducible factorization

here is a factorization of f. Remember, the degree of g 0 and h 0 are equal to degree of g

and degree of h, respectively, because c and d are constants. When you write g as c g g 0,

g and g 0 have the same degree. So, this is factorization of f in Z X. 

That means, if we started with the factorization in Q X a priori g and h may not be inte-

ger polynomials we may have that they are only rational polynomials. But by writing

them as product of their contents and primitive polynomials and observing that the prod-

uct of the contents is an integer, we can write this. So, this is actually not f is equal to cd,

g 0 h 0, I should not say f is equal to g 0 h 0, it is cd g 0 h 0. So, it is an irreducible fac-

torization, it is a factorization into product of smaller degree polynomials, hence f is not

irreducible in Z X that means, f is reducible in Z X. 

So, now, if the conclusion of, now, I am going to go back to the proof of Eisenstein crite-

rion. If the conclusion of the Eisenstein criterion is false then f is reducible in Q X, right.

If the conclusion of the Eisenstein criterion is false, then f is reducible in Q X. By the

above claim f is also reducible in Z X, right, it is reducible in Z X claim is if a polyno-

mial is reducible in Q X, then it is reducible in Z X. So, it is reducible in Z X.
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So, I am going to now write f as g time h, g times h, g and h in Z X. Now, consider the

image of f in by phi p that are equal to earlier, phi p is the map from Z X to Z mod p Z X.

So, what do we have is phi p of f is phi p of g h because g h see f, g and h are all here,

right and f is equal to g h. So, phi p is a ring homomorphism, right. So, phi p f is phi p g

h which is equal to phi p g times phi p h. Now, what is phi p f? f remember, I have writ -

ten f as a n X n plus a n minus 1 X n minus 1 plus a 1 X plus a 0 that means, because phi

p is a ring homomorphism, this means this is a phi p by definition of phi p rather this is a

n bar X power n, a n minus 1 bar X power n minus 1, a n bar X plus a 0 bar, right.

This is what phi p does. Phi p takes a polynomial and simply changes the coefficients, it

does not change X, this is equal to this. But remember, this is 0, this is 0, this is 0. So,

this is nothing, but a n bar X n. Why is this? Because, remember, p divides a n minus 1, p

divides a n minus 2 and so on all the way up to p divides a 1 p divides a 0. This is the hy-

pothesis. So, we have this and also p does not divide a n that means, a n bar is not 0, so a

n bar times X power n is a non-zero polynomial. 

(Refer Slide Time: 19:41)

So, phi p f is actually just a n X, a n bar X power n, but phi p f remember, is phi p g

times phi p h, so phi p n g times phi p h is a n X power n. Now, we have two polynomi -

als in f Z mod p Z X whose product is this. Now, recall that Z mod p Z X is a UFD, right

because it is a polynomial ring over a field. In fact, it is a PID which we do not need for

now, we only need that it is a UFD because Z mod p Z is a field; it is a UFD, so any



polynomial ring in over a UFD is UFD. So, it is a UFD and you have a factorization of a

monomial like this. So, this is remember, a single monomial, so phi p g and phi p h must

be must also be monomials of the form. So, what can it be?

(Refer Slide Time: 20:55)

So, you have some polynomial times another polynomial is; so, you have product of phi

p g times product of phi p h is a n, a n is some constant, right, a n bar is some constant in

the underlying ring here which is Z mod p Z. So, how can what can they be? They can be

something a coefficient, something like b n b i bar X power I, c i bar X power j, where i

plus j is equal to n and b i bar and c i bar are in Z mod p Z X, right.

This must be the only possible factorization. This is the only possible factorization of a

monomial of the form a constant times X power n because if there is any other factoriza-

tion that means, if for example, phi p g has two terms then in the product also you will

have two terms. So, there will be two terms of different degrees. Whereas, this is the one,

there is only one monomial here. In other words, what are the irreducible factors of an-

other way of saying this is irreducible factors of a n, X power n are there is only one irre-

ducible factor namely X, right. 

X power n has only one irreducible factor. You can write it as X times X times X n

times. There is no other irreducible factor for a n bar X power n there is only one that

means, any divisor of a n bar X power n must be a power of X. So, coefficients we do

not care, but there will be some coefficients. So, it is b i bar X i c i bar X j.
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So, now what does this mean? So, phi p g is a i or in my notation b i bar X power I, phi p

h is c i bar X power j c j bar X power j. So, you should also write c j. So, now, think of

what g is remember, f is g h. So, g is some polynomial in Z X, h is some polynomial in Z

X. When you go modulo p only X power i survives, hence we can conclude that the con-

stant term of g is 0. Similarly, the constant term of h is 0. 

Why is this? Because; sorry this is not 0, I cannot say constant term of g bar phi p g is 0

constant term of phi p h is 0. So, what we can say is a constant term of g is divisible by p

that is what I should say. Similarly, constant term of h is divisible by p. So, you have two

polynomial you have a polynomial g when you go modulo p the constant term disap-

pears, right because phi p g is equal to b i X i and also I should say I is positive j is posi-

tive because this is a factorization that comes from the rational polynomials. So, you

have two polynomials with positive degree.

So, when you go modulo p the constant term goes away because the only X power i term

survives. So, the constant term of g goes away that means, it becomes 0 in Z mod p Z

that means, it is divisible p, it is divisible by p in Z. Similarly, in the constant term of h

becomes a 0 and Z mod p Z that means, it is divisible by p in Z. 

Now, if that constant term of g is divisible by p and the constant term of h is also divisi-

ble by p, we note that constant term of f, remember, is just the constant term of f, con-

stant term of g times constant term of h, right. When you multiply two polynomials g and



h in the product the constant term is just the constant term of g times constant term of h.

Constant terms just multiply to give the constant term of the product. So, constant term

of f is constant term of g times constant term of h. So, this is divisible by p, this is divisi-

ble by p. 

(Refer Slide Time: 25:57)

Hence, constant term of f is divisible by p squared, right because this is p time some

thing, this is p time some thing. So, the whole thing is p squared times something. So,

this is divisible by p squared, but this violates or contradicts the hypothesis that p does

not divide a 0, right. So, remember, I not only assume that p divides a n minus 1 and up

to p divides a 0, I did I also assume that p does not divide a 0. So, now, that gets the con-

tradiction. So, this proves that hence f is irreducible in Q X, ok. So, now this proves the

first statement of the Eisenstein criterion. 
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If f is irreducible in Q X and also primitive, if f is also primitive content of f is; so, we

want to now show that f can be f cannot be irreducible in sorry, f has to be irreducible in

Z X. So, assume that f is also primitive. If f is not irreducible in Z X that means, f is re-

ducible in Z X, then f has to be then f 1, f can be written as some c times f 0, where c is

in Z and f 0 is irreducible or f 0 is another polynomial in Z X, right.

In other words, what I am saying is that f cannot be written as, f cannot be written as a

product of two non-constant integer polynomials. What we are saying is that, I am writ-

ing f as c times f 0, where c is in Z 0 in Z X because f cannot be written as a product of

two nonzero, sorry two non-constant integer polynomials. Why is that? If f can be writ-

ten as a product of two non-constant integer polynomials, it can also be written as a prod-

uct of two non-constant rational polynomials because any integer polynomial is a ratio-

nal polynomial. 

So, and we assumed or rather we already proved that f is irreducible in Q X, right. So, f

cannot be written as a product of two positive degree rational polynomials. And if it,

hence, if it is not irreducible in Z X, there is only one possible factorization of f into a

product a product is of an integer and a integer polynomial, but of course, c is also your

not a unit. So, so we have f is c f 0, c is not equal to 1 or c is not equal to minus 1 be -

cause it is an irreducible factorization, right. So, it can be written as a product of two

non-units. 



So, c and f 0 are not units that is the meaning of not being irreducible. It can be written

as two product of two non-units. So, f is c f 0, c is neither one nor minus 1 that means, c

divides all the coefficients of f, right obviously, because f is c times f 0 c divides all the

coefficients of f, but this is not possible. Why? Because f is primitive. Remember, we are

given that f is primitive that means, the gcd of the coefficients of f is 1. So, there cannot

be any non-unit in Z that divides all the coefficients of f. So, f must be irreducible in Z X

also. So, this completes the proof.

So, we first proved that f is irreducible in Q X, then we immediately conclude that the

only way that it is a not irreducible in Z X is that it is an integer times a polynomial be-

cause it cannot be written as a product of two non-constant polynomials that is clear. Be-

cause, if it can be written as a product of two non-constant integer polynomials then it

can be written as a product of two non-constant rational polynomials violating the irre-

ducibility in Q X. So, the only possible factorization is an integer times another integer

polynomial, but then that integer must divide all the coefficients of f f, but f is primitive,

so that integer is 1 or minus 1. So, that proves the fact that if f is a primitive polynomial

then f is also irreducible in Z X, ok. 
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So, now let me quickly give you some examples of Eisenstein criterion to illustrate how

useful it is. So, I hope the proof is clear, if not you should just the it is fairly similar to

the previous videos. So, you can just go back and see the video again, and hopefully it



will become clear to you. So, now, some examples; so, we already looked at some be-

fore. Just for example, I can take X power 10, let us say 27 X power 6 plus 213. Is this ir-

reducible in Z X or Q X? 

It is because it is irreducible in Q X first and how because it is primitive it is also irreduc-

ible in Z X, right. It is certainly primitive because the coefficient one of the coefficients

is 1, so the gcd is 1. Because p equal to 3 satisfies the required conditions, right because

3 divides 27, 3 divides 213. And we also want 3 does not divide that is clear here 1, the

leading coefficient is 1 and 9 does not divide 213, right. So, 9 does not divide 213 you

can quickly check that means, p equal to 3 satisfies this. 

So, every time you are asked to check or you want to know if a polynomial is irreducible

or not. First, see if there is a prime that works sometimes it does not, sometimes Eisen-

stein criterion does not give you the answer; in general there is no algorithm which al-

ways works to verify a polynomial is irreducible or not. So, we are just trying to learn

new techniques to do it and Eisenstein criterion is an extremely useful technique. 

Sometimes, it might appear like initially you do not have you initially you might think

that you cannot apply Eisenstein criterion, but some small modification works to give

you the answer. For example, here you take X power 5 plus 3 X squared plus 2 this is a

polynomial and you want to know it is irreducible or not because it is primitive if it is ir-

reducible in Q X its irreducible in Z X. 

So, now, certainly on the face of it no prime works, right, because only prime that di-

vides constant is 2, only prime that divides the coefficient of X squared is 3. So, there is

no prime, right because 3 does not divide 2, 2 does not divide 3. So, you cannot work. 
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However, let us take this as f of X, a small trick will do the job for you if you take f of X.

So, actually let me take this as X cube. If you take f of X plus 1, so f X is X 2 plus 3 X

squared plus 2 if you take f of X plus 1 what is this is X I am replacing X by X plus 1

here. So, X plus 1 whole cubed plus 3 times X plus 1 whole squared plus 2. 

So, now, if you expand this and combine; so, I will quickly do this and you can check the

it is correct you will have X cubed term plus 3 X squared and there will be another 3 X

squared that will be 6 X squared plus there will be a 3 X here and 6 X here. So, that will

be 9 X there will be a one there will be a 3 there will be a 2. So, that will be 6. Now, p

equal to 3 works, right so that means, 3 does not divide the leading coefficient 3 divides

6, 3 divides 9, 3 divides 6, 9 does not divide 6. So, we can conclude f of X plus 1 is irre-

ducible, right. 

So, f of X plus 1 is irreducible. What can you so; because this is a polynomial to which

Eisenstein criterion applies and that we can say its irreducible and I should actually say

in Q X also in Z X because it is a primitive polynomial. So, it is it is also irreducible in Z

X. But original question is for f X. And what can you say about f X? I claim that f X is

also irreducible in Z X. Why? If not, we can write f X as some g X times h X, this is a

polynomial identity. 

So, let me just first do Q for simplicity, it is a polynomial identity, where g and h are

positive degree polynomials. And every time you have a polynomial identity we can for-



mally replace the variable by any other expression. So, f X plus 1 can has to be g X plus

1 times h X plus 1 because both sides you are replacing by X. But this if g X is positive

degree the simplest degree of g X plus 1 is also positive degree is also positive, because

again if g X is X power, 3 X power 2, X g of X plus 1 is will be also there will be X X

squared term there because X plus 1 whole squared will appear and then that will give

you X squared. 

So, the degree of g X plus 1 is same as degree of g X, degree of h plus 1 is degree of h X

and here you have written f X plus 1 as a product of two positive degree polynomials.

This violates irreducibility of X, X f of X plus 1. So, f X plus 1 is irreducible by Eisen-

stein criterion. If f X is reducible f X plus 1 is also reducible violating the hypo the con-

clusion earlier. So, f X is also irreducible. Once the f X is irreducible in Q X, f X is f X is

primitive. So, f X is also irreducible in Z X, ok because, if its primitive and its irreduc-

ible in Q X we proved already that it is irreducible in Z X.

(Refer Slide Time: 38:25)

So, the final example I will give for Eisenstein criterion which is actually a very useful

example and it will come when we study fields and field extensions called cyclotomic

field extensions and this is the following. So, let p be any prime integer, let p be a prime

integer, let f X be the polynomial given by X power p minus 1 times X plus X power p

minus 2 plus X power p minus 3 and so on X square plus X plus 1. So, again, I my ques-

tion is: is it irreducible over Q X, if so it will be irreducible over Z X, but we cannot use



no prime works, right. Again, no prime works in the Eisenstein criterion because all the

coefficients here are 1. So, certainly no prime divides the coefficients.

But again, the trick is to use what I have done in the previous example. But what I will

do now is if I multiply f X by X minus 1, what do I get? So, I get X minus 1 plus times X

power p minus 1 plus X power p minus 2 plus X squared plus X plus 1. And now if you

multiply this out what you get is simply X power p minus 1 because all the other terms

will cancel out, right. There will be an X power p minus 1, plus X power p minus 1, mi-

nus X power p minus 1 and you will cancel all the terms except this. 

So, what you will have is X minus 1 times f X is this. But then I said y is equal to X mi-

nus 1. So, I am changing variables here. Now, what do I get? I get y this equation. So, X

minus 1 times f X equals X power p minus 1. So, in this I am replacing X minus 1 by y

that means, y times if y is X minus 1 y plus 1 is X. So, f X is f y plus 1. So, y times f y

plus 1 is X minus 1 or rather X y plus 1 over p minus 1 because X is y plus 1. So, y times

f 5 plus 1 is equal to y 1, y plus 1 power p minus 1. But what is this? This is y power p

plus p y power p minus 1 plus p choose 2 y power p minus 2 all the way up to p y power

p y, right plus 1 minus 1.
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So, this until this is just y power 1 power y plus 1 power p. If you expand y plus 1 power

p by using binomial theorem this is what you get y p plus p y p minus 1 p choose 2 y p



minus 2 and so on plus 1 at the end. So, you cancel that 1 with this minus 1, what you

end up with is y power p, p y power p minus 1 p choose 2 y power p minus 2 p y, ok.
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Now, this looks more promising, right. You can conclude that this is irreducible using, so

let us call I mean this is f of f times y times f y plus 1 by Eisenstein criterion; what we

need to claim is. And this, I will leave as an exercise for you this is a very easy exercise

p divides p choose i for all, i from 1 up to p minus 1, ok. So, of course, when you take i

equal to 1, p choose i is just p so p divides that, p also divides p choose 2, p choose 3 and

so on. Here the important fact is that p is a prime. So, the reason is you can write p

choose i as. 

So, this is by definition p factorial, by i factorial times p minus i factorial, right. So, sup-

pose you cancel i factorial or p minus i factorial you have p times p minus 1 up to p mi-

nus i plus 1 by i factorial, right. So, I have cancelled p minus i factorial from numerator

and denominator. So, in the now if you look at this i is strictly less than p. So, p is not

going to appear in the denominator, right, i factorial is 1 times 2 times 3 times up to i. So,

p does not appear in the denominator whereas, p appears in the numerator so that means,

p divides this. So, this is a quick hint, but I will let you finish the argument and show that

p divides p choose i for all i. 

So, y times f y plus 1 is irreducible in Q X and Z X by Eisenstein criterion, right. This is

because p divides all the coefficients other than the leading coefficient p divides this, p



divides p choose 2, p divides p choose 3, p divides p and p squared does not divide the

last coefficient, ok. So, actually sorry, I should this is not quite correct. So, I should con-

tinue one more step. So, what we have is y times f y plus 1 is equal to y power p, p p y

power p minus 1 p choose 2, y power p minus 2 plus p y.

(Refer Slide Time: 44:14)

Now, I divide by y both sides so I cancel y. Divide by y. What, what I get is f i, f y plus 1

is y power p minus 1 p y power p minus 2, p choose 2 y power p minus 3, p choose 2 y

plus p. If I divide by the previous term is p choose 2 y squared, so that becomes p choose

to y plus p. Now, apply Eisenstein criterion. See, earlier we cannot apply Eisenstein cri-

terion because the leading coefficient the constant term is 0. Now, we can to conclude

that f y plus 1 is irreducible. But, what is f plus f y plus 1? y plus 1 is just X, right. So, re-

member, that was our change of variable y plus 1 is X. So, f y plus 1 is irreducible, so f

X is irreducible. 

Remember, f y plus 1 is irreducible, again in Z X I can say, in Q X or Z X its irrelevant

here. So, this is because p divides all the coefficients here other than the first coefficient

which is 1 and p squared does not divide the constant coefficient. So, this Eisenstein cri-

terion applies to this to conclude this is irreducible in Q X, but this is also primitive, so

this is irreducible is Z X. So, f y plus 1 is irreducible in Z X. So, f X is irreducible in Z X

because y plus 1 is equal to X, X. So, in this video we looked at Eisenstein criterion



which is an extremely useful technique to prove irreducibility in Q X or Z X and we also

looked at some examples.

So, this completes whatever I wanted to say in this course in ring theory. So, in the next

1 or 2 videos I will do some problems on rings just to summarize whatever we have done

and then we will go to fields.

Thank you. 


