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In the last video I defined and studied principal ideal domains, we are special classes of

rings where very nice property holds that every ideal is principal. So, in this video we are

going to study a more important class in some sense of rings and more general class cer-

tainly it includes PIDs, is this notion of Unique Factorization Domains.

(Refer Slide Time: 00:38).

So, these are nice rings which cover most of the interesting examples that we have stud-

ied in this course and which this property that we want to define is very important. Prin-

cipal ideal domains are also very nice, but the property is too special many nice rings do

not have that property. For example, the ring Z x is perfectly good ring, but it is not a

principal ideal domain. 

But it is a unique factorization domain as we will prove in this course, so unique factor-

ization domains are an important class of rings. So, as the name suggests we are going to

ask for the following property, we want every element to have a factorization into irre-

ducible elements and that factorization should have should be unique essentially unique,

I will define what unique means.



But the model to keep in mind is the following is the model that you are familiar with is

the ring of integers and in school you all learned that every integer can be factored into a

product of prime numbers. Prime numbers are irreducible elements in the integers, be-

cause in the set of in the ring of integers irreducible and prime are really the same no-

tions.

So, model to keep in mind, in the ring of integers, we can say that every integer can be

written essentially uniquely I will say why I will put this in quotes and say essentially

can be written uniquely as a product of prime integers. So, I am going to call them prime

integers now, because in an arbitrary ring also we are going to talk about prime elements.

So, prime integer is actually a prime integer the way we have learned it in school right.

For example, 30 can be written as 2 times 3 times 5, but it is not quite unique because I

can also write it as minus 3 minus 2 times minus 3 times 5.

And, now I am going from the notion of prime integers that we have learned in school

which in under which notion a prime number is has to be a positive number. But in the

more general notion of prime elements in an arbitrary integral domain Z is an integral

domain, so there is no reason to exclude negative numbers. So, minus 2 is also a prime

element so and hence it is an irreducible element so we can write it like this.

So, I am not going to we will not read this as different right, because the way that we will

not read this as different is we will consider 2 and minus 2. Appearance of 2 and minus 2

is the same, that means whether 2 comes or minus 2 comes we are not going to make a

difference, because they are associates that is the crucial statement there. So now, this is

the model as I said to keep in mind; we want to see whether this can be carried over to

arbitrary integral domains. Can we now say that any element in that ring can be factored

like this and if possible uniquely ok?



(Refer Slide Time: 04:16)

So, the question is what we have learned in school is that in integers you can do this,

question is: how much of this is possible in an arbitrary integral domain? So, if you go to

an arbitrary integral domain how much of this is possible? So, first of all we want to fac-

tor. So, how do we go about factoring? So, let R be an arbitrary integral domain. So, we

will put some conditions later and define unique factorization domains, but let us start

with an arbitrary integral domain and let us take an element R (Refer Time: 04:16) ele-

ment a.

So, how do we factor a how do we factor a? So, this is what we do. So, we if how do we

factor a into a product of irreducibles? If a is irreducible, we stop. So, it is sort of an al-

gorithm, so if a is irreducible we stop there is nothing to do a is its own irreducible fac-

torization. For example, the number of five in the ring of integers is irreducible, so you

do not do any more work you stop.



(Refer Slide Time: 05:46)

So, if a is irreducible we stop if a is not irreducible by definition a can be written as a 1 b

1 for some a1, b1 in R which are not units right which are both not units. Because, if a is

not irreducible we know that there is a proper divisor, if a1 is a proper divisor we can

find another proper divisor b1 such that a is a times a1 b 1.

So, we have gone from a1 a 2 a1 b1 if a is irreducible we stop otherwise we find two

other elements a 1 b 1. If a 1 is irreducible we stop here and if b1 is also irreducible we

stop and that is the irreducible factorization. If both are irreducible we stop with the fac-

torization given by a1 b1. If either of them is not irreducible we continue right, a 1 fac-

tors properly as a product of two non-units b 1 factors properly as a product of non-units

and we look at those four elements. If they are all irreducible we stop here or so we may

stop at any stage.
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If at any stage we have all irreducible elements we stop and thereby we achieve our irre-

ducible factorization, otherwise we will continue right and potentially we may have to

continue forever. So, we say that factorization, so the question is can we continue? Is it

possible to continue forever. So, that will not be good right, if you have to continue for-

ever, that means there is no factorization for a because you cannot only if you stop some-

where we achieve a factorization of a. 

So, we say that factorization terminates in R we say that factorization terminates in R, if

the above process stops or terminates somewhere for every a in R. So, if it stops for ev-

ery a we start with some if it is irreducible we stop, if not we factor it. If the two factors

are irreducible we stop if not we continue we factor those two and then keep continuing

suppose it stops somewhere for every element in the ring then we say that factorization

terminates in R, so that is a phrase. So, it is a property of a ring.

(Refer Slide Time: 08:50)



So, the statement is hence the conclusion is if factorization terminates in R, then every

element of R has an irreducible factorization ok. So, this is clear right, if factorization

terminates in R and you are given an arbitrary element of a arbitrary element a of R we

continue the process we described in the previous page. If it is irreducible we stop if not

we factor it, if the two factors are irreducible we stop if not we continue factoring them

and eventually it stops.

Because I am assuming that factorization terminates in R that is a phrase, that that phrase

represent says that for every element this process stops. Obviously, then every element

has a irreducible factorization. We are not yet coming to uniqueness I am currently only

interested in establishing when factorization actually exists. So, it exists when factoriza-

tion terminates, I should right away warn you that in general factorization may not termi-

nate as the following example shows.

In general, factorization may not terminate. So, the above process I described may never

stop as an example let us look at the following ring. Let us look at the ring given by Z

adjoined square root 2, 4th root of 2, 8th root of 2, 16th root of 2 and so on ok. So, this is

actually a subring of the real numbers, where I am adding square root of 2 4th root of 2

8th root of 2 and so on. So, any element of this ring is a finite sum of some integer times

an element some 2 power n th root of 2 plus another element times 2 power n 1th root

and 2th root of 2 and so on. So, elements are like this.



For example this is an element ok. So, it can also be some 124 128 rather root of 2 some

3 times this minus 256 root of 2 and so on right. So, this is a ring.

(Refer Slide Time: 11:27)

Any such combination you take in fact I can take squares any powers and it will be an el-

ement of this. So, these are elements, I claim that in this ring in R, 2 has no factorization,

because let us follow the algorithm that I described earlier. So, 2 is not irreducible be-

cause it is a product of square root 2 and square root 2 right neither of them is a unit. But,

square root 2 is also not an irreducible element because, it is fourth root of 2 times 4th

root of 2 and then also 4th root of 2 4th root of 2. So, basically what I am saying is that

you can continue this right.
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This is 4th root of 2 power 4, but I can also do 8th root of 2 power 8 16th root of 2 power

16 32 th root of 2 power 32, where do you stop there is nowhere you can stop 2 has no fi-

nite factorization. You cannot say this is a factorization because 32nd root of 2 is not an

irreducible element, it actually further becomes 64th root of 2 squared that is 32 square

root 32 30 second square root of 2 is 64th square root of 2 square.

So, you can keep doing this at any stage, you do not have a factorization, so you have to

keep going. So, this is a strange ring of course, it will not happen in most common rings

and I will tell you for example, it does not happen in Noetherian rings as we will see

later. So, immediately we conclude that there is no hope of doing factorization in any in-

tegral domain. So, this is certainly an integral domain right, R is an integral domain be-

cause it is a subring of the real numbers. So, certainly in factorization is not possible.
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Leave alone unique factorization, factorization itself is not possible in all integral do-

mains; it is too bad right. We are hoping that maybe the what happens for the integers

can be carried forward for every integral domain, but that s not the case, as this example

shows. So, we have to ask for so we must have the property that factorization factoring

or factorization terminates in R right. So, this we have to ask it may not be true for every

integral domain as this example shows. 

So, we have to ask for as a special property of R, so this must happen. So, this is a spe-

cial condition, but now let us come to uniqueness. Let us come to uniqueness ok. So

now, remember uniqueness on the nose is not true even for integers because, the factor-

ization 2 3 5 and factorization minus 2 minus 3 5 should be considered really same,

though the exact  elements  that  appear  there  are  not  same.  So,  what  is  the notion of

uniqueness that I want to define?
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So, we say that a has unique factorization, if a small element a. So, I want a small ele-

ment I say element small a has unique factorization if the following happens, given any

two. So, first of all if a has first of all a has factorization into irreducible that must be

happening into irreducible factors, otherwise the if there is no factorization there is no

point talking about uniqueness of factorization.

So,  first  of  all  it  has  a  factorization  and if  we have two different  factorizations  p 1

through p m is equal to q 1 through q n are two different factorizations. Whenever I say

factorization I mean factorization to irreducible factors, that means p 1 through p m q 1

through q n are both are all irreducible elements. Then we must have m equal to n and af-

ter reordering if needed p i is an associate of q i for all i from 1 to m. So, one m and n are

same to begin with and after reordering because we have to reorder possibly.
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See 2 3 5 is same as minus 3 5 minus 2 right. So, unless you reorder you cannot say 2

and minus 3 are associates. So, we reorder one of them then there are three factors here

that is m and there are also three factors here. So, m and n are equal and after having re-

arranged 2 minus 2 are associates, of course in the ring of integers they are associates 3

minus 3 are associates. And of course 5 and 5 are associates because they are actually

equal elements. So, this is exactly what we mean by unique factorization, not quite that

elements are equal but elements are associates.

(Refer Slide Time: 17:40)



Another example I will write Z i which I told you as a fact last time that it is a PID. In

fact, it will turn out to be UFD also after we prove that every PID is a UFD, but in this

ring we have 2 plus i times 2 minus i is 5 because 4 plus 1, but this is also equal to 1 plus

2 i or rather I will write maybe 1 minus 2 i and 1 plus 2i ok. 

So, these two are associates, because you multiply this by i or minus i you get this and

these two are associates. You multiply this by i you get i squared minus i squared is 1 2 i.

So, this is also unique, these factorizations are unique or rather or for all practical pur-

poses they are considered same, so these factorizations are same.

(Refer Slide Time: 18:51)

So, now I am ready to define the main definition of this video an integral domain R is a

UFD, I will use the short abbreviation UFD for unique factorization domain. So, it has

two properties, of course it has two properties it is a two words right it is an three words

really unique factorization domain. So, it has to be an integral domain that is why the

factorization must exist. So, factoring terminates in R this must happen. 

So, that every element has a factorization into irreducible factorizations of any element is

unique for all a in R. So, unique in the sense of this, so I say that they are unique if the

number of irreducible must be equal and after reordering if needed. The first one is an as-

sociate of the first one second one is an associate of the second one and so on. So, this

second property is a uniqueness first property is a factoring in the hypotheses that it is a

domain takes care of D.



So, unique factorization domain is one which is an integral domain where factoring ter-

minates and because of the first property every element has a unique irreducible factor-

ization. But irreducible factorization must be unique ok. So now, in this rest of this video

and in the future videos we are going to study properties of unique factorization domains.

So, let me prove a proposition to get control of the first property, see factoring seems

factoring terminating seems a difficult condition to check. So, I want to do a proposition

to simplify that process, let R be an integral domain then the following are equivalent.

So, this is a standard notation for TFAE, it means the following are equivalent, TFAE the

following are equivalent.

(Refer Slide Time: 21:17)

So, what are the two statements that I want to make here factoring terminates in R, fac-

toring terminates in R which is what we are interested in finding out and the second con-

dition is that any ascending chain of ideals not just any ideals. In fact, I want any ascend-

ing chain of principal ideals stabilizes. So, this notation should remind you of the video

when we were talking about Noetherian rings, recall  that a Noetherian ring is a ring

where every ascending chain of ideals stabilizes, we did not put the word principal there.

So, this is a weaker condition any ascending chain of principal ideal stabilizes.

So, in particular a Noetherian ring will have the second property hence it will have the

first property. So, in any Noetherian ring factorization terminates. So let us prove this.

So, I will prove this is very simple, so let us prove 1 implies 2. Suppose factoring termi-



nates in R and let us take an ascending chain of primes, principal ideals rather. Let us

consider a1 contained in a 2 contained in a 3 and so on. So, I am trying to show that as-

suming one I want to show that any ascending chain of principal ideals stabilizes.

Suppose not suppose you have an ascending chain of principal ideals which does not sta-

bilize.

(Refer Slide Time: 23:20)

So, then we will show that then a1 has no factorization, that is because which violates

then that factor terminates, because if this continues like this what we have is a1 can be

written as a 2 times b 2 right. The fact that a1 is contained in this means a1 is in the ideal

generated by a 2; that means, a 2 times b 2 for some b 2. So, a1 can be written as a 2 b 2,

but a 2 is in the ideal generated by a 3 which means we have a 3 b 3 b 2. 

So, I am retaining b 2 as it is, but a 2 can be written as a 3 times b 3 and remember if this

chain does not stabilize this statement here implies a i is not a unit for any i right. If a i is

unit for some i, that means the ideal generated by a i would be the unit ideal. But unit

ideal will be equal to R. So, beyond that everything is unit ideal that means the chain has

stabilized, stabilizing means after some finite stage they are all equal.

So, if a hundred is a unit the ideal generated by a hundred is R, that means a1 hundred

and one is also R a1 hundred and two is also R. So, beyond hundredth stage everything is

R, but then the chain has stabilized which we are assuming as not happened it does not



stabilize. So, it is not a unit that means, these are all proper factorizations. So, you can

continue now a 4 b 4 b 3 b 2. So, I have carried over b 3 b 2 and written a 3 as a product

of a 4 b 4 and then it keeps going.

(Refer Slide Time: 25:26)

So, it is a simple exercise now to show that this tells us that. See a i’s and b i’s may not

be irreducible, but if a 1 has an irreducible factorization you cannot keep forever factor-

ing like this, a 1 has no proper factorization sorry a1 has no irreducible factorization. If

there is a chain of principal ideals which does not stabilize the first one or any one of

those cannot have a factorization this contradicts 1. So, it must be the case that 1 implies

2 if factoring terminates is given an ascending chain of principal ideals must stabilize.

So, let us prove 2 implies 1.

So, this little thing I will leave as an exercise for you, to convince yourself that if a1 has

an irreducible factorization you cannot possibly keep forever factoring a1. Now let us

prove 2 implies 1, so now I am assuming 2 I am assuming that there is a given any chain

of principal ideals it stabilizes. So, let small a be any arbitrary element, I want to show

that the algorithm that I defined at the beginning of this video terminates. How, recall

what was the algorithm if a is irreducible a has a factorization.

So, suppose so actually I am going to assume that 1 is false and get a contradiction. Sup-

pose that a has no factorization, I am trying to show one right I am assuming two and I

am trying to show one which is that factoring terminates in R, which is another way of



saying that every element of R has a factorization. Suppose that there is an element of a

R called a which has no factorization. That means, we could have factored a as a1 b1 and

we would then factor a1 as a 2 b 2 a 2 as a 3 b 3 if a 3 as a 4 b 4 and so on right, this

must continue forever.

This algorithm continues forever, that is the meaning of a having no factorization. But

that means, the ideal generated by a is in the ideal generated by a1 right because a is a1

b1 ideal generated by a1 is in the ideal generated by a 2, because a1 is a 2 b 2, similarly

the ideal generated by a 2 is in the ideal generated by a 3 and this continues forever, this

does not stabilize. That is the meaning of our algorithm does not stopping anywhere that

means this does not stabilize, because at each stage we have a proper factorization.

So, for example, the ideal generated by a four is strictly bigger than ideal generated by a

3. If it was not a 3 and a 4 would be associates, so b 4 would be a unit and you would

have stopped. So, somewhere actually I should be more careful somewhere in this tree

we have an infinite chain, maybe it stops here but b 3 we factor it is does not stop there.

So, wherever it does not stop if you trace through that path we get an infinite chain of

principal ideals which does not stabilize. 

So, this is not quite correct because it maybe that this stops, but somewhere else it does

not stop. But does not matter I can assume without (Refer Time: 29:09) of generality that

this does not stop. So, this does not stabilize so 2 implies 1.
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So, the advantage of this proposition is that we have we are able to conclude: if R is a

Noetherian integral domain, then in a Noetherian integral domain then factoring termi-

nates  in  R right.  So,  in  other  words  every element  of  R has  an  irreducible,  ok.  So,

Noetherianness is too strong a property, because in Noetherian rings every ascending

chain of ideals stabilizes. 

Whereas, for factoring to terminate we only need that every ascending chain of principal

ideals to stabilize. But still if you have a Noetherian ring we can be sure that factoriza-

tion terminates and hence every element has a irreducible factorization. It is not going to

imply that irreducible factorization is unique, but at least you are guaranteed that factor-

ization terminates. So, that every element has a factorization.

 (Refer Slide Time: 30:48)

So, now I will end this video by giving an example even if factorization exists it may not

be unique ok. It may not be unique because as the example our favourite example this is

something that we have considered before R I will take Z adjoined square root minus 5.

This is providing us all the examples that we are interested in right. It gave us an exam-

ple of an irreducible element which is not prime, it gave us an example of it was going to

give us an example of something which where unique, factorization is not unique. So,

and this is something we have seen before.

So what I will leave for you is to show that these are distinct, they are actually not same

as I defined earlier. When do we call two factorizations same, the number of irreducible



factors that appear are same is equal and up to reordering they are associates of each

other. So, what you have to do is 2 and 3 are irreducible, 1 plus square root minus 5 and

1 minus square root minus 5 are irreducible. So, these are both irreducible factorizations,

but 2 is not an associate of either of them this is something that came up earlier and this

can be proved by proving this fact only units in R are 1 and minus 1.

So, there are no other units, so if two and either of these elements are associates. For ex-

ample, 2 and 1 plus root minus 5 is associates 1 plus root minus 5 will be 2 times a unit.

But this says that only units are 1 and minus 1, but 2 times 1 is 1 2 times minus 1 is mi-

nus 2, neither of them is equal to 1 plus root minus 5. So, this is the exercise that I want

you to do and I want to also prove that 2 and 2 is irreducible. We have proved using the

same argument prove that 3 is irreducible and similar argument tells you that 1 plus root

minus 5 and 1 minus root minus 5 are irreducible, so these are distinct irreducible factor-

izations. 

So, this is not unique and hence this ring is not a UFD right, though actually turns out

that this is a Noetherian ring. So, it is in this ring factorization terminates. So, every ele-

ment has a factorization into irreducible elements. However, as this example shows this

is not a UFD. So, this is an important example which provides various counter examples

to things. So, what I want to do next in this video we have learned what UFD s are these

are rings, where factorization exist and is unique and we have proved that in a Noether-

ian ring factorization exists. 

But it may not be unique, but factorization exists and in even more bad rings like Z ad-

joined roots of 2, 2 power nth roots of 2, even factorization does not exist. And in a nicer

ring like Z adjoined square root of minus 5, factorization exists but it is not unique. In the

remaining, next few videos we are going to look at more examples of UFDs, in particular

we will prove that a PID is a UFD. So, that gives us a collection of nice examples of

UFDs and we will prove that there are some rings which are not PIDs, but which are

UFDs, so that is for the next video.

Thank you.


