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Principal Ideal Domains

In the last  two, three videos,  we talked about the notion of irreducible  elements  and

prime elements  in an arbitrary integral  domain and we also introduced the notion of

greatest common divisor for a pair of elements and we saw an example where they great-

est common divisor may not exist. So, the general statements we have proved; let me

quickly recall without writing them. We proved that in any integral domain, a prime ele-

ment is irreducible that is automatically true, but irreducible elements may not be prime. 

And we saw an example of the ring Z adjoint square root of minus 5 in which case in

which ring 2 is an irreducible element, but it is not a prime element. So, in the next cou-

ple of videos we are going to study two very important classes of rings in which irreduc-

ible elements are in fact, going to be prime ok.
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In the first class of examples is class of rings are called Principal Ideal Domains. So, they

are referred to in short as PIDs. So, principal ideal domains are very simple. So, a ring

so, this is the definition; an integral domain R is called so, I will always use the abbrevia-

tion PID for principal ideal domain. So, an integral domain is called a PID if every, as



the name suggest every ideal must be principal; every ideal of R is principal. So, in other

words every ideal I is in fact, generated by a single element.

So, the most important examples that we have encountered already in the course are of

course, the ring of integers and the polynomial ring in one variable over a field right. So,

these are some of the standard examples and of course, K a field itself. A field is defi-

nitely a PID because it is an integral domain and it has only two ideals the zero ideal and

the unit ideal, both of which are principal. So, we have three examples here; this second

and third are in fact, classes of examples.
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And some other rings that we have encountered before which happened to be PID is this

ok. So, this I will not prove for you because that will take me away from what I want to

do, but the idea is the same as the examples we have considered.

So, if we quickly recall how did we prove that every ideal in Z is principal or that every

ideal in K x is principal we used essentially what is called Euclidean algorithm right; Eu-

clidean division algorithm. We have the notion of size in these rings. Size of an integer it

is just its absolute value, size of a polynomial is its degree. So, given any ideal we picked

an element with a least degree in the polynomial ring and least positive number in the

case of integers. Here we have a size given by the norm of an element of this.



So, as I said I will not go into details, but we can always do the following. Given an ideal

we can pick the pick an element with the least possible norm or size which is the sum of

squares of the real and imaginary parts. So, this is the size of a plus ib and carry out the

same procedure that we used. Given any ideal if it is 0 ideal, we are done; if it is not pick

an element with the smallest size, then argue that every other element is a multiple of this

by sort of dividing the two elements. 

So, we can carry out the division process exactly as in the case of integers or in the poly-

nomial ring, but this is a useful example of principal ideal domain; what is not an exam-

ple of principal domain principal ideal domain and it is this some familiar ring to us it is

a very nice ring otherwise, but this is not a PID.
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The reason is the ideal for example, 2 comma X is not principal, it is not difficult to

check this explicitly right because if 2 X is principal say, what is a principal ideal it is

generated by a single element. So, say it is generated by a polynomial f X, then first of

all you argue that f must not be a constant polynomial. In other words degree of f must

be positive why because I will just say this and I will let you work out the details. 

If degree f X is 0; that means, f X is actually a an integer it is a constant polynomial

means it is an integer no way that it can generate X because remember if 2 comma X is

equal to f X x is a multiple of f X. So, it cannot be a generator it cannot be an integer be-



cause X is never a multiple of an integer unless it is 1 of course, but if it is 1 the ideal

generated by 1 is the entire ring, which 2 X is not. So, degree of f X must be positive.

And once its positive, 2 is not a multiple of because if it is a positive degree polynomial

when you multiply by any other polynomial degree only increases, it may stay the same.

If you multiply by constants or it will actually increase if you multiply by non constant

polynomials, but it will never decrease. So, you can never obtain 2 as a multiple of this is

a simple explanation for why Z X is not a PID.

Similarly, K X 1 ... X n is not a PID if n is at least 2 right; the reason is the ideal X 1

comma X 2 is not principal the same kind of reason as before. These are two independent

variables. So, you cannot choose any single polynomial whose multiples are X 1 and X

2. So, this will never happen if you remember the language of irreducible elements X 1

and X 2 are irreducible elements. So, they cannot be written as products multiples of

some other polynomial. 

Same polynomial will not do for X 1 and X 2 X 1 of course, is a multiple of X 1 and X 2

is a multiple of X2, but there is no single polynomial whose multiples include X1 and

X2. So, these are not PIDs. So, these are nice rings polynomial rings over in n variables

over a field where n is at least 2 and polynomial ring in one variable over the integers are

not are nice rings, but they are not PIDs ok. So, what are the some interesting properties

of PIDs that I want to emphasize in this video.
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So, properties of PIDs properties of PIDs; one is that these are actually propositions,

proposition. Let R be a PID, then any irreducible element in R is prime. Remember that

we saw in an example that in general if you have an integral domain irreducible elements

may not be prime though prime elements are always irreducible, but irreducible elements

are not necessarily prime in general; however, in a PID that happens to be the case ok.

So, actually I should make this proposition 2 and I will  write proposition 1 for now

which I will prove first and then we will do proposition 2 ok.

So, what is proposition 2? Let R proposition 1, what is proposition 1? Let R be a PID and

let us take two elements then a and b have a g c d, ok. So, I am going to use this to prove

the first second proposition. So, why is this? I want to say that if you have two elements,

then g c d always exists as I have again indicated in the same example R equal to Z ad-

joined square root minus 5; this is not generally true.

So, let me recall this is not in general true as the example of edge. So, I do not remember

the two examples maybe this. So, you take these two elements, they are both elements of

the ring R they are not unit is and they have no greatest common divisor so; however, in

the case of PID s any two elements have g c d and why is that.
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So, let us consider it is very simple both propositions are in fact, very easy to prove. So,

let I be the ideal generated by a, b; ideal generated by a and b; since R is a PID I is prin -

cipal, every ideal is principal. So, let I be equal to some d for some it is a principal ideal.



So, it is generated by a single element; let us call that d, then we claim that as you guess

d is a g c d of a and b. Remember g c d there may exist several g c d s, but d is one of

them. So, first of all remember what is g c d. We have to show one that d divides a and d

divides b. So, let us quickly check this. Why is this true?

Remember the ideal generated by a, b is equal to the ideal generated by d, but a is an ele-

ment of the ideal generated by a, b. So, a is an element of the ideal generated by d; that

means, a is equal to d x for some x; similarly b is an element of a, b. So, b is an element

of the ideal generated by d. So, b is d y for some y which is exactly the definition of d di-

viding b and d dividing a. So, d divides a and d divides b; in other words it is a common

divisor.

Now, we need to show that it is a greatest common divisor. So, let us choose e an ele-

ment of R divide; let e divide both a and b, right. So, let e divide both a and b; that

means, then I claim that a,  b the ideal is contained in e, why is this? This is because a x

equal to e b y equal to e for some x and y in R by definition of e dividing both a and b;

that means, a x sorry this is not correct I should write e x equal to a, e y equal to b, e di-

vides a. 

That means, e x is equal to a for some x e y is equal to b for some y; that means, a is of

the form e x means a is in e x a is in the ideal generated by a e similarly, b is in the ideal

generated by e. So, a, b is the entire ideal if the generators are in some ideal the entire

ideal generated by a and b is in e.
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But this is actually d e so; that means, the ideal generated by d is contained in the ideal

generated by e; that means, the element d is in the ideal generated by e; that means, d is

equal to e z for some z right d is an element of e means d is an element of the ideal gen-

erated by e means d is of the form e times some other ring element; that means, e divides

d. So, this completes the proof of the proposition which said that any two elements I

have g c d.

Now, I am going to prove the second proposition. So, this is proof of proposition 1, now

I will do proof of proposition 2. Remember proposition 2 said in an in a PID every irre-

ducible element is prime. So, let a in R be irreducible right. So, suppose, we want to

prove that we want to prove a is prime right. I claimed that every irreducible element is

prime.
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So, we want to prove that a is prime, but if prime means so, suppose that a divides a

product of two elements let us say b c, where b and c are in R. So, we want to show that

a divides either b or a divides c ok. So, now, assume also that and a does not divide b. If

it divides b we are done suppose it does not divide b, we are going to show that a divides

c ok. So, now, not that so, by proposition one there is a g c d of b and a and b. 

Remember when I write g c d of a and b it may suggest that there is a unique g c d, but I

am not claiming that this is just a convenient notation for me all I am saying is that there

is a g c d which I am calling d. Let us take the g c d of a and b. Now, we know that d di-

vides by definition of g c d, d divides a. So, d divides a, but a is irreducible right by hy-

potheses a is irreducible. So, we have two possibilities an irreducible device; an irreduc-

ible element cannot have proper divisors.
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So, either we have that d is a unit or d is an associate of a, right. We have that d is an as-

sociate of a or d is a unit I because a is irreducible d is not because a is irreducible a can-

not have proper divisors, d is a divisor it cannot be proper. So, in other words it fails to

be proper either because it is a unit or because it is an associate of a; I claimed that the

second case cannot occur because if d is an remember that a does not divide b right. I am

I am assuming that a does not divide b, but d divides b. So, d divides b because d is a g c

d of a and b. So, definitely d divides b. So, now, d divides b a does not divide b. So, a

and b cannot be associates.

Remember what is the meaning of associates  they either  differ by a unit  or in other

words d is a multiple of a and a unit or equivalently d divides a and a divides d. So, if d

divides b and a divides b a does not divide b a cannot divide d because if a divides d;

then if a divides d and d divides b; that means, a divides b, which cannot happen. So, in

other words d and a cannot be associates. So, this case cannot occur right. I will put it

like that: this case cannot occur. So, d must be a unit.
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So, d is a unit, but this means the ideal generated by d is entire R, because a unit is an el-

ement which has a multiplicative inverse; that means, d times some element is one; that

means, one is in the ideal generated by d. In other words it is equal to R, but, that means,

the ideal generated by a and b is 1 right because d is a g c d of a and b; that means, the

ideal generated by a b by previous proposition how do you get the g c d. It is the genera-

tor of the ideal generated by a and b which is R. 

So, ideal generated by a and b is R; that means, there exist elements e comma s in capital

R such that r s sorry r a plus s b is equal to 1 right because 1 is an element of R; 1 is an

element of R. It is also simultaneously an element of the ideal generated by a and b. Any

arbitrary element of the ideal generated by a and b is of the form r a plus s b where r and

s are two ring elements.

But; that means, I can multiply both sides by c to get r a c plus s b c is equal to c; I am

just simply multiplying this equation by c. So, r a c plus s b c is equal to c. But now note

that this term a divides this term by definition right because it is a times r c. On the other

hand a also divides this term this term. Why is this? Because a divides b c by hypotheses

a divides b c. So, a divides s b c no matter what s is a divides s b c. This means a divides

c right, because if a divides r a c a divides r s b c; that means, a divides their sum if an

two numbers are two elements are divisible by a their sum is also divisible by a. So, a di-

vides c which is what we require right.



So, this completes the proof of the proposition. The proposition claimed that any irreduc-

ible element is prime. So, if you have a PID every irreducible element is prime, I have

just proved that I have started with an irreducible element which divides a product and it

does not divide one of them and I have concluded that it divides the other.
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So, this finishes the proof of proposition 2. Some other properties of PIDs is that a PID is

Noetherian. This is very easy right this is a one line proof: every ideal of a PID is princi-

pal. So, certainly it is finitely generated right it is much stronger in fact, than being fi-

nitely generated. 

So, a PID is automatically Noetherian and one final do proposition. I will do just to illus-

trate some interesting properties of PIDs. Let R be a PID, let capital P be a non zero

prime ideal of R then P is in fact, a maximal ideal; P is maximal. So, in a PID it is an in-

teresting statement that which is in general certainly not true every non zero prime ideal

is maximal. In fact, so, let us prove this.
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So, since P is principal the property of a PID that every ideal is principal is extremely

powerful as this propositions are telling you. So, since P is principal, we have a generator

a; let us say for some a non-zero, remember that is because P is non-zero. P is non-zero

means P is not the zero ideal; that means, it has non-zero elements. So, it is generated by

a non-zero element. Now I want to show that P is maximal, what is a maximal ideal? It is

an ideal which is not contained in any bigger proper ideal.

So, we are going to take a bigger ideal, let I be an ideal of R such that P is contained in I

and I is contained in R of course, I is contained in R, but the point is it is it contains P.

So, again using the hypotheses that I is principal or P is R is PID, I is principal. So, sup-

pose I is generated by a single element right.
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.

So, what we have is, just rewriting this a is contained in ideal generated by a is contained

in the ideal generated by b. So, a is an element of a which is contained in b so; that

means, a is an element of the ideal generated by b; that means, a is equal to b c for some

c in R by definition a is a multiple of b. So, a is equal to b c for some c in R, hence a

equal to b c belongs to P and P is a prime ideal remember from a few lectures ago. What

is a prime ideal? 

It is an ideal such that if a product belongs to that ideal one of the elements belongs to

the ideal. So, b is in P or c is in P. So, let us see both implications, both cases give us

something right. So, suppose b is in P; in this case the entire ideal b is contained in P;

that means, of course, we know that P is contained in b by hypotheses; that means, b is

equal to P. So, this is ok. I am trying to prove that there is no bigger ideal in this case it

just happens to be the same ideal.

Suppose b is not in P then what do we have here. So, c is in P right because remember ei-

ther b is in P or c is in P because P is a prime ideal if b is not in P c is in P. So, and what

is P? P is the ideal generated by a. So, c can be written as a d for some d in R for some d

in R, but now let us start with this earlier equation a is equal to b c. So, a is equal to b c,

but c we just observed is a d. So, this is b a d; that means, a is equal to b a d.
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That means, a times 1 minus b d is equal to 0. I am just subtracting b c d from both sides

b a d from both sides and factoring a, but since b is non zero a is non zero and R is a inte-

gral domain 1 minus b d is 0 right. We have in an integral domain if two elements multi-

plied to 0; one of them must be 0 so; that means, b is a unit right; that means, b is a unit

because b d is equal to 1. So, b has a multiplicative inverse.

So, b is a unit and hence the ideal generated by b which I called I is R ok. So, we are

done because I have started with an arbitrary ideal that contains P and I have concluded

it is either equal to P. It is either equal to P or it is equal to R ok. So, P must be maximal

it is an interesting statement that every non zero prime is maximal. So, again we see that

by in this example. So, this is not a PID as I proved earlier and in this there are the ideal

P which is generated by 2 is prime non-zero, but P is not maximal right because P which

is generated by 2 is contained in 2 X right. So, this is not equal to 2 and this is not equal

to Z X.

So, again this is not maximal because it is contained in a proper bigger ideal. So, this

again confirms that Z X is not a PID because in a PID we have shown that every non

zero prime ideal is maximal ok. So, these are some of the properties of PIDs and in the

future videos, we will talk more about this. So, just to recap what we have done PIDs are

rings where every non-zero, every ideal is principal, the most standard examples for us

are integers, polynomial rings over any field and fields. Of course, but some of the other



nice rings that we have considered Z X, polynomial rings in more than two variables are

not PIDs. PIDs have the nice property that any irreducible element is prime and they are

Noetherian, any two elements have g c d s and every non zero prime ideal is principal.

So, let me stop this video here; in this video we have talked about principal ideal do-

mains. In the next video, we will start learning about unique factorisation domains.

Thank you.


