Introduction To Rings And Fields
Prof. Krishna Hanumanthu
Department of Mathematics

Chennai Mathematical Institute

Lecture - 11
Quotient rings
So, let us continue now. So, in the last few videos we have done some examples and ex-
ercises, hopefully which gave you some idea of how to work with rings. So, in this video

I am going to start with a very important operation in ring theory called quotienting.
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So, I want to introduce to you what are quotient rings. So, this is very similar to the no-
tion of quotient groups that you have studied in group theory course. So, what are quo-
tient rings? So, here I take a ring R so, before I start this let me give you a quick recap of
how do we define quotient groups. So, here in the case of groups we have a group G and
we want a normal subgroup H and, then we want to give a group structure to the set of
left cosets of H in G and that was called G mod H and in order to give a group structure

to that we needed H to be normal.

But, here we do the same, we will first consider the additive group R. If R is a ring re-
member under addition it is an abelian group because it is abelian we do not need to
specifically now ask for normal subgroups because every subgroup is normal. So now,

we want to consider subgroups of the additive group of R and take the quotient group.



But in order to give a ring structure to the quotient we need additional properties on the,
on that subgroup we started with and that simply happens to be the ideals. So, all we

need is an ideal.

So, ideal will do the job for us. So, I is an ideal. So, the set R mod I will be exactly what
you are used to in the case of groups. So, consider R mod I ok. So, let me write first, note
that R is an abelian group under addition and I, I is more than a subgroup, but it is cer-
tainly a subgroup under addition ok, it is a subgroup under addition. So, we can consider
basically just forgetting the multiplication on R and the additional property of an ideal

we forget for the moment or we do not need that for the moment.

(Refer Slide Time: 02:59)

' INTRODUCTION Ta RINGS AND FIELDS - 'Winciowd Jourral — ﬂ“
QaMesdo09e  CHEZ-9-5 oA
{/AEEEENEN NOEE L
S R unde oddEten.
Ml. E G P\ [+ 9 M

4o b f b aselt TR

i

We can consider the set of cosets and I will write left cosets of I in R. So, we will denote
this as usual by R mod I. So, these are left cosets so, these are things of the form al, a in
R. So, my goal is to make this ring. Our goal make or let me write give a ring structure to
give ring structure to R mod I that is my goal; what it already has. What it already has is,
it already has an addition and it is a group under that; till this point it is nothing new, this

is exactly group theory.

R is a group under addition, abelian group under addition, I is a subgroup. So, R mod I
the set of left corsets is a group. So, let me recall what is the operation here. So, the oper-
ation of addition is al, sorry. So, actually I wrote something wrong here. Yes, I take that

back. So, go back to this, it is not al right. I am not taking a cosets under multiplication I



am taking cosets under addition so, a plus I. So, as I told you when I define R mod I do

not look at multiplication, I do not need or I do not refer to multiplication of I.
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So, how do I add two cosets? It is simply a plus I plus b plus I is a plus b plus I. So, un-
der this, I R mod I is a group. What now I want to do is give define multiplication so, this
is a group. So, define multiplication by the following. What is that? I take a plus I and I
take b plus I ok, now this is there is one natural thing to do here. I take one coset a plus I,

another coset b plus I and I define it to be a b plus L.

So, this is natural to do still we have to check various things, we have to check first of all
that it is well defined. So, this is my definition. This is well defined, we need to check
that. Why? I need to check that this is well-defined because a plus I is a coset remember,
I can take one representative you can take another representative. So, it looks like a if |
take a as a representative, you take a prime as a representative, youdo a b, I do a b, you
do a prime b. But, a b and a prime b should give you the same coset otherwise this is not

well defined.

So, what do I have to do? So, to check well-defined, I have to do the following. Suppose
a plus I is same as a plus a prime plus I and b plus I is same as b prime plus I prime. So,

what do I have to show?
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We need to show this is the usual thing that one has to deal with when one works with
cosets right. Because, a coset can have several representatives and there is no unique
choice, right; whatever we define operation that we define we need to ensure that the
choice of the representative plays no role. So, in other words we need to show that a b

plus I is equal to a prime plus b prime a prime b prime plus I.

If I show this then I would have checked well-defined as because, because no matter
what I choose, a plus [ or a plus I or a prime I plus I or b plus I or b prime plus I, I would

get the same result.

So, how do I check this? So, we want to check this, this is exactly the well-definedness.
Now, let us use the fact that a plus I is a prime plus I prime I, this means a minus a prime
is in I. This is a property of left cosets, right? Left cosets have this property that if two el-
ements of the group have this are in the same coset; that means, their difference is in that
subgroup. Similarly, b plus I is equal to b prime plus I implies b minus b prime is in I ok.

So, now what I will do is I will multiply this with let us see, I will multiply this with b.

I claim that a b minus a prime b is in I. Why is this implication true? This implication is
true so, let us say star, star is true because here is where we will introduce the, we will
need the additional property of an ideal. It is not merely a subgroup right, it has a prop-

erty that you take an element of I, multiply by any ring element, it lands again in I, that



property is used here; a minus a prime is in I, b is an arbitrary ring element I multiply by

that so, a b minus a prime b is in L.

Similarly, I multiply the second one by this is also because of star, by a. I multiply this
by a. So, a b minus a b prime is in I. So, what I have is a b minus a prime bisin I, a b
minus a b prime is in I. So now, take the difference, I is an ideal. So, if two things are in

the ideal their differences in the ideal.

So, a b minus a prime b sorry so something is wrong here. So, actually I will do a prime
times this. So, b minus b prime is in I, a prime is a ring element, I multiply by a prime it

is also in the ring; it is in the ideal. So, a prime b minus a prime b prime is in I.
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So, now I take the difference. So, I get a b minus a prime b minus a prime b minus a
prime b prime is in 1. Because individually they are in I, their differences is in I but this
means a b minus a prime b minus a prime b plus a prime b prime is in 1. So, of course, |
cancel this now. So, yeah, I am sorry actually I take the sum, I got confused. So, I take
the sum, not the difference so, I take the sum. So, I put plus here so, again two things are
in I their sum is also in I right. So, I can take a b minus a prime b plus a prime b minus a

prime b prime.



So, now I cancel a prime b a prime b this is in I; that means, a b minus a prime b prime is
in L. This tells me that a b I plus I is equal to a prime b prime plus I ok, that is what I

needed to prove; a b plus I is equal to a prime b prime plus L.

Two cosets are equal; a plus I is equal to b plus I remember if and only if a minus b is in
I that is what we have using all the time. In order to show a b plus I is equal to a prime b
prime plus [; I need to show that a b minus a prime b prime is in I which is what I have

shown here ok.
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So, the multiplication defined above is well-defined because I do not need to worry about
which representative I pick. You pick a representative, I pick a representative and our
when we you multiply your representatives I multiply my representatives, we get the

same answer. So, multiplication above is well defined.

So, now the theorem is: R mod I with the above addition. So, I will write the full state-
ment of the theorem here and we will give a sketch of the proof with the addition and
multiplication defined above; with the addition and multiplication is a ring, that is the

first point.

So, we have addition that makes it in abelian group, I just defined a multiplication which
I said is well-defined and it makes it a ring. Further there is a natural ring homomor-

phism phi from R to R mod I, given by phi of a is equal to a plus I and there is a natural



homomorphism like this, in other words I am saying this homomorphism and kernel phi
is precisely I. This is a fundamental theorem in ring theory because in order to study
rings we need to construct quotient rings and quotient rings are connected to the original

rings via this theorem.

So, R mod I is a ring to begin with and whenever you think of a quotient ring you have to
also think of this natural ring homomorphism from the ring to the quotient ring and the

that ring homomorphism has the property that its kernel is I.
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So, I am going to give you a proof, but not of the fact that R mod I is a ring ok. So, that
is a fairly simple check. It is easy to verify the ring axioms for R mod I. So, in other
words multiplication is commutative, multiplication and addition are distributive. See we
do not need to worry about anything about addition right because R mod I is already an
abelian group under addition that comes just from group theory. All we need to do is the
new data which is multiplication satisfies the ring axioms, which I will leave for you for

example, what is the, I will only mention this.

What is the ring multiplicative identity for the ring R mod I? It is simply 1 plus I; 1 plus I
is the multiplicative identity. This is actually easy to check because a plus I is an arbi-
trary quotient ring element. If you multiply by 1 plus I by the definition of multiplication

I gave it is a plus a times 1 plus I which is a plus I.



So, you multiply something with 1 plus I you get that back. So, 1 plus I is the multiplica-
tive identity, the other things are fairly easy to check. So, R mod I is ring; so, I will not

prove this ok. The first part of the theorem I will not prove, that it is a ring.
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On the other hand let us prove that we have already given a map R to R mod I, phi of a is
a plus I, this is also easy to check. Why is it; why is it a ring homomorphism? So, what
we need to check? Phi is already a group homomorphism. This is from group theory
right, because, R mod I is constructed as the left additive cosets of I. So, it is a group and
this is a group homomorphism which anyway by you can check directly phi of a plus b is
a plus b plus I by definition of phi which is a plus I plus b plus I which is phi a plus phi
b.
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What is phi of 1? Remember phi of 1 must be 1, but phi of 1 is 1 plus I which is the mul-
tiplicative identity. The second property of a ring homomorphism is that the identity ele-
ment of the domain ring has to go to the identity element of the codomain ring. Here R is
the domain ring, R mod I is the codomain ring, 1 is the ring identity element of R, 1 plus

I is the identity element of R mod I. So, 1 goes to 1 plus I by definition so, that is fine.

Finally what is phi of a b? Phi of a b is by definition a b plus I by definition of the map,
phi is a b plus L. But, by definition of the multiplication in R mod I a b plus I is same as a
plus I times b plus I which is same as phi a phi b. So, phi is a ring homomorphism, all
these properties imply that phi is a ring homomorphism. So, now the last thing, what is
the last thing in the theorem? Kernel of phi is identity.



(Refer Slide Time: 18:25)

¥ INTRODUCTION To RINGS AND FIELDS - Windowet Jrnal - sl
i Vit e T

ffe ik Yew o e
ddkd«Pd u0%¢ "Wl -2-2 "l0%8
L/NEEEEEEN mOEE “--!; b ]: = Trw
+ —
~(a+T)(b+L)

\A[’('l‘ﬂ) = Ouk*r
P s nr{na \nommnr hasm

e g § aR] gz &

=%a&aww=°*175
N

So, what is kernel of phi; is all elements a in R such that phi a is 0, in R mod I right be-
cause, phi is a (Refer Time: 18:36) from R mod I. But this is same as a in R phi a is equal
to what is the zero element in R mod 1? Zero element is additive identity right, R mod I
has additive identity O plus I right phi a is equal to 0 plus I. But what is phi a? So, this is
a in R such that a plus I, because a plus I is equal to phi of a by definition is 0 plus 1.
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So, in other words this is a in R such that a plus I is equal to 0 plus I. When are two

cosets equal? I mentioned this earlier, if the difference of these two elements is in I; that



means, a is in [ a minus 0 is in I so, a is in I. What are elements in R such that a is in I?
This is precisely 1. So, kernel of phi is equal to I. This is the last point of the proof. So,
the proof is finished. So, quotient rings are very important for us. Quotient rings come

equipped with a natural ring homomorphism from R to R mod I, whose kernel is I.

So, now let me do some examples to work with this. The first example is something you
have already seen, you can take Z mod nZ for any n right; because nZ is an ideal Z mod
nZ, this we are already familiar with ok. So, let us look at something more, something
different and this will also anticipate something that I want to do next. Let us take R to
be the polynomial ring in one variable. So, let us take R to be the polynomial in one vari-
able and the ideal I to be all multiples of the polynomial x squared plus 1. So, this is de-

noted by x squared plus 1 around round brackets.

For example x squared plus 1 is in I, x squared plus 1 times x minus 1 is in I, x squared

plus 1 times any polynomial in general is in L.

(Refer Slide Time: 20:57)

'] INTRODUCTION Ta RINGS AND FIELDS - Winsows Journal - sEl
TR e ————r,

0k« Pl 502 gl ~9-%

|/ ANEEEEEN BOEE .

Y-1¢L | ¥t & ‘2
R
Re= 1 atTlas
= 4 -F(r)*'rlfme RD]%'
L €S *;nas-

i ;Sﬁm”?‘n‘c

R R

M'ﬁ

But what are not in I? x minus 1 is not in I right because x minus 1 cannot be written as a
multiple of x squared plus 1 just for degree reasons. Similarly x plus 1 is not in I. So,
these are elements which are multiples of x squared plus 1. So, R mod I to is by defini-
tion elements of R plus I, in our case R is the polynomial ring. So, I will write this as f x

plus I, where f'x is in the polynomial ring.



So, what I want to do is prove that this is familiar to you, this ring is familiar to you; in
the process of proving this you will understand more about quotient rings. So, I will
prove a proposition R mod I that I wrote here is isomorphic to the ring of complex num-
bers or the field of complex numbers, as rings or as fields it does not matter. So, R mod I

is isomorphic to C. So, in other words I want to produce a ring isomorphism from R mod

Ito C.
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What I will do is the following. So, this is the picture. We have R so, this is useful to
keep in mind. So, remember R is R x, the standard or the natural map we have from R x
to I, right. So, there is always a natural map that I defined by phi. So now, I want to de-
fine a map to C that is why I call it psi. So, | want to define psi and show that it is an iso-

morphism is my goal. So, I want to define psi and make it an isomorphism.

So, what I will do? So, what I will do is choose, define psi like this, as follows. So, take

an element of R x mod I. What is an element of R x mod I?
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It is an element of the form f x plus I. So, psi of f x plus I, I define it to be f of 1, where 1
is, of course, a square root of minus 1. So, remember again [ am taking an element in the
quotient ring, I am just evaluating the corresponding polynomial at x equal to i. So, again
the question is, is it even well defined, is psi well defined? That must be proved right be-
cause for this coset f x plus [ may be you choose g x as your representative and then you
are image will be g of i, I choose f x my image will be f of i. So, f of i and g of i should

be equal to each other for this to be well defined.

So, what we need to show is, let f x I be equal to g x I right; that means, f x minus g x is
in [; by definition of equality of cosets if two cosets are equal their difference of fand g
is in 1. But what is I? I is x squared plus 1. So, we can write f X minus g x is equal to x
squared plus 1 times h x for some polynomial h x in R x. See all this is happening now
in R x not R x mod I. So, everything here is from this point onwards is happening in R x.

Now, let us look at this equation here and substitute x equal to i.
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So, what do I get? I get f of i minus g of i is equal to i1 squared plus 1 times h of i. But
what is i squared plus 1? i squared plus 1 is minus 1. So, minus 1 plus 1 is 0, this is 0. It
does not matter what h of i is. So, f of i minus g of i is 0. So, f of i equals g of i. So, this

proves that psi is well-defined.
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So, we have a well-defined map at least from R x mod I to C. So, now next step is to
show phi is ring homomorphism. This is actually very easy because psi of, what is 1 plus

I? Remember identity element of R x mod I is 1 plus I. And, what is psi of that? It is the



polynomial 1 evaluated at I which is 1. So, psi of 1 is 1, remember psi of f x plus I is f of

1. So, if f x is constant it is just that constant; 1 plus I goes to 1.

What is psi of f plus I plus g plus 1? This is psi of f plus g plus I by definition of addition
in R mod I, this is f plus g of i. So, this is f of 1 plus g of 1, again usual polynomial prop-

erties.
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And, this is psi of f plus I plus psi of g of I; g plus I. And finally, psi of f plus I times g
plus I is by definition of multiplication, psi of f g plus I which is f g of I by definition of
psi which is f of 1 times g of 1 by definition of by properties of polynomial rings polyno-

mials.
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And this is psi of f plus I times psi of g plus 1. So, these three properties imply that psi is
a ring homomorphism and what is an isomorphism of rings? I told you this before; an
isomorphism of rings is one which admits ring homomorphism which admits an inverse
ring homomorphism or equivalently psi is 1-1 and onto. So, 1-1 means injective; we will
show that it is injective and it is on to. So, it suffices to show it is enough to show kernel
psi is 0, right. Because, remember in an earlier video I did a problem in which we said

that a ring homomorphism is injective if and only if its kernel is 0.
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So, what is the kernel of psi; is all elements f plus I in R mod I in R x mod I such that phi
of fplus I is 0. But that means, all elements f plus [ in R x mod I such that f of i is 0.
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If f of 1 is 0 so, now I will do some simple calculations. So, f is a polynomial over real
numbers, f of i1 is 0, then I will quickly finish this, but you can do this easily. Then f of i
bar which is actually minus i. So, I will write it here: say f x is in this f of i is this, then f
of i bar which is also 0. See this is because f has real coefficients, see f'is let us say an x

nplus a1 x plus a 0 where, ai’s are in R.
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fofiisanipowern dotdotdotaliplus a0 this is 0, but now take complex conjuga-
tion which is what bar is right, take that. So, f of i bar is this whole bar, but complex con-
jugation is also a ring property homomorphism. So, this is, but 0 bar is 0 right, but a n’s

are real numbers.

So, a n bar is just a n. So, a n i bar power n a 1 i bar plus a 0, is 0 because if a is a real
number a bar is a. What is complex conjugation by the way? a plus i b is equal to a mi-
nus i b; conjugation of a plus i b is a minus i b. But this means right, because this if you
look at this all we have done is that replaced x by 1 bar. So, f of i bar is 0. So, fof11s 0

implies f of 1 bar is 0.
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But that means, x minus 1 in an earlier video we showed that so, this fof 11s 0, if 1 is f of
11s O then x minus 1 divides f and if f of 1 bar is 0 then x minus 1 bar also divides f x, but
X minus 1 bar is x plus i because i bar is minus i. So finally, what we have is that x minus

1 divides f'x, x plus i divides f x.

This is if you want in C x. Inside C x I have x minus 1 and x plus i divide f x, but that
means, X minus i times x plus i divides f x. So, because x minus i and x plus i have noth-
ing in common, no factors in common. This is a point that [ will mention again when we

talk about unique factorization domains; x minus i times x plus i divides f x in C x.
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But x minus i times X plus 1 is actually equal to x squared plus 1. So, x squared plus 1 di-
vides you can say in R x because now, x squared plus 1 is in R x and f x is also in R x.
So, if they if this divides x squared plus 1 divides f x in a larger ring, it also divides it in
the smaller ring; that means f x is in I. So, ok, this is a long proof but it is important to

understand this.
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So, what we have just shown is that kernel.
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