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Lecture – 19
Binomial Distribution

In this  lecture  we discuss  probability  models  for  counts;  we discussed binomial  and

Poisson distributions 2 discrete distributions.  Where we actually try to count and see

what is the probability of some count happening out of some possibilities.
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So, let us explain this in detail familiar situations could be tossing a coin which we are

very very familiar whenever we study probability. So, the simple question is a if I toss a

coin 10 times what is the probability that I get 4 heads, what is the probability that I get 6

tails, what is the probability I do not get a head at all what is the probability that I get

more than 1 head and so on.

Another  situation  that  is  often  discussed  in  textbooks  and  literature  is  a  medical

representative trying to meet a doctor with a certain probability, representative goes and

asks for a meeting and the doctor may meet the doctor may say later. So, there is a

probability of meeting the doctor similar questions come out of 10 times, how many

times or what is the probability that the representative is able to meet the doctor 6 times.



Just to extend it  if the probability of meeting the doctor is the same, if he meets 10

different doctors what is the probability or tries to meet 10 different doctors what is the

probability that he meets 6. So very similar situation; winning a match is reasonably

familiar  in  the  sense  just  like  tossing  a  coin,  there  is  a  probability  associated  with

winning a match.

All  these  have  3  common  characteristics  each  is  a  random  variable  which  has  2

outcomes, one of which is called a success and the other is called a failure. The moment

we call one of the outcomes a success the other automatically becomes a failure. Now in

the example of winning a match you could say winning a success and losing is failure, in

the example of a medical representative meeting a doctor successfully having a meeting

with the doctor would be called success and not being able to meet the doctor could be

called failure.

Whereas, in tossing a coin we have to define what a success is and what failure is and it

depends on how we define in term one could define probability of getting a head as a

success and getting a tail as a failure, somebody else would define probability of getting

a tail as a success and head as a failure.

Sometimes when we tried to do inspection and try to find out defective items, success

could be identifying a defective item; whereas,  in reality  a defective item would not

mean something successful it would mean something that is not successful. So, it only

depends on what we define as success and what we define as not success which becomes

failure. So there are 2 outcomes which we call a success and failure.

Now, probability of success is the same irrespective of the number of times it happens

tossing a coin is a very good example. So, we might have just got a head and then we

toss again what is the probability of getting a head half, it neither increases nor decreases

because of  the earlier  attempt  and results  of successive events  are  independent  once

again tossing a coin is a very good example of successive events being independent. It

actually  does  not  matter  whether  the  previous  toss  resulted  in  a  head  or  a  tail,  the

probability of head and tail remained the same, so to that extent they are independent.

If we look at winning a match it is expected to be independent it does not matter whether

you won the previous match or not, but then you play a match your probability of victory

is the same. Medical representative meeting a doctor is expected to be independent at



times  we  may  question  that  because,  maybe  the  last  attempt  we  the  medical

representative  was  able  to  meet  the  doctor  and  therefore  the  doctor  might  possibly

decline and so on. 

But if we extend the same example by saying that this medical representative is trying to

meet 10 different doctors then we can quickly understand that the events are independent

unless  the  doctors  talk  to  each  other.  But  let  us  assume  that  these  3  common

characteristics are there in this situation and such a trial is called a Bernoulli trial.
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So, again we represent the same thing there are 2 outcomes B equal to 1 the trial is if it is

a success and a 0 if it  is a failure, success is with a probability of p and failure is a

probability of 1 minus p. So, expected value of B is 1 into p plus 0 into 1 minus p which

is p. The variance of B is 0 minus p the whole square into probability of B equal to 0 plus

1 minus p the whole square into probability of B equal to 1, which is p square into 1

minus p plus 1 minus p the whole square into p which is p into 1 minus p, so again to

repeat random variables with 3 characteristics are known as Bernoulli trials.

So, there are only 2 possible outcomes which are called success and failure, probability

of success is the same for every trial and the results are independent. So, we just ask a

question  in  reality  it  is  true  we  discuss  this  aspect  particularly  with  the  medical

representative visiting a doctor, but then if there are 10 doctors and we want to do that,

then they are independent.



Same  thing  is  true  with  tossing  a  coin,  the  problem is  the  same  whether  the  same

individual tosses a coin 10 times and you want to find out the probability of getting 4

heads versus 10 different people tossing at the same time with the same probability of

getting a head and then you want to find out; out of these 10 what is the probability that 4

got heads, so the problem is the same.

(Refer Slide Time: 06:52)

Now, we define a binomial random variable, a random variable that counts the number of

success.  So,  every  binomial  random variable  is  the  sum of  the  given number  of  iid

Bernoulli trials independent identically distributed in independent Bernoulli trials. So, let

n be the number of Bernoulli trials and p be the probability of success for each trial. So,

expected value of Y is expected value of B 1 plus expected value of B 2 plus expected

value of B n which is p plus p plus p n times.

So,  when this  Bernoulli  trial  is  repeated  n times  expected value  is  n  into p and the

variance of y is variance of B 1 plus variance of B 2 and so on. So, it is p into 1 minus p

plus p into 1 minus p n times, so n into p into 1 minus p, we consistently use p and 1

minus p to represent the probability of success and probability of failure a times we also

use q equal to 1 minus p as an additional notation and then say that the variance is n into

p into q where q is 1 minus p which is the probability of failure.
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Now, assume now we define what are called binomial probabilities so assume n equal to

10. So, probability of y the random variable equal to 0 will be probability of the first one

equal to 0 and second one equal to 0 and the third one equal to 0 and so on. So, each is a

failure so each is 1 minus p so 1 minus p multiplied 10 times, so 1 minus p to the power

10; Y equal to 1 success. So, 1 success out of 10 is the first one being successful in the

others fail the second one being successful and the others fail and so on.

So, its 10 times p into 1 minus p to the power 9 and in general we can now show that

probability of x successes out of n trails is n C x p to the power x q to the power n minus

x. So, there are n trials  out of which x is successful so that is p to the power x the

remaining n minus x our failure. So, q or 1 minus p to the power n minus x and the x

successes out of n trials can happen n C x times, therefore n C x p power x q to the

power n minus x. For example, if we extrapolate this as y equal to 2 then one could go

ahead and say 1 and 2 being successful the rest not 1 and 3 being successful the rest not 1

and 4 being successful and so on.

So, finally it boils down to choosing 2 out of 10, 10 C 2 ways into p to the power x p

square q to the power n minus x q to the power 8 or 1 minus to the power 8, so in general

its n C x p power x q to the power n minus x.
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Just try to find the probabilities for n equal to 6 and p equal to 2, so x equal to 0 n C 0 p

to the power 0 q to the power 6 we get 0.262144. So, probability of one success out of 6

is n C 1 6 C 1 p to the power 1 q to the power 5, so which is 6 C1 is 6 into 0.2 into 0.8 to

the power 5 which is 0.393, 2 out of 6 is 245, 3 out of 6 is 081, 4 out of 6 is 015, 5 out of

6 is 001536 and all 6 out of 6 is 000064. If we try to plot these they obviously they add

up to 1 we can check that 0.26, 0.39 is roughly about 0.65 this 0.25 is about 0.8 0.8889

and so on, 0.26 plus 0.39 is about 0.65 here it is about 0.25. So, 0.65 plus 0.25 is 0.9,

0.98 0.99 and the fractions add up to 1.

The  plot  also  tells  us  something  interesting  that  when  we  have  n  equal  to  6  and

depending of course on p equal  to 2,  since p equal  to  0.2 the maximum probability

happens for 1 here and so on and one can show that as p increases it moves a little bit to

the right. But after some p of 4 p of 5 p of 6 etc you realize that they have very very

small values and they kind of come close to 1 as we add them they come close to 1 the

smaller values are closer to 0 and progressively decreasing.
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Now, we try to look at Poisson random variables. So, we look at again some situations

the number of visitors in an hour, the number of phone calls in a call center per hour,

number  of  defects  in  a  square  centimeter  of  wafer  and  so  on.  So,  Poisson  random

variable  describes  the  number  of  events  determined  by a  random process  during  an

interval it is very important during an interval, the parameter lambda which is shown by

this symbol here the letter the Greek letter lambda represents the rate within the disjoint

intervals.
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So, if x denotes a Poisson random variable with a given parameter  lambda,  then the

probability distribution of p of X taking the value small x is equal to e to the power

minus lambda lambda to the power x by x factorial.  Now in the Poisson distribution

there is no limit on the size of the variable X can take any value, example if lambda is 2

per minute.

For example, we say that people arrive at the rate of 2 per minute in probability of 0

people arriving is 0.135 which comes from e to the power minus lambda lambda power x

by x factorial. Probability of 2 people coming in the interval is 0.135 probability of 1

person coming in the interval is 0.27, so that is got by e to the power minus lambda

lambda to the power 1 by 1 factorial where lambda is equal to 2.

So, probability of 3 people coming in that interval is 0.18, 4 people is 0.09 and 5 is 0.036

and as X increases small x increases the probability of X equal to x becomes very very

small. So, even here if the average is 2 per minute it is it is fairly acceptable that no

person comes 13 percent of the times, 1 person comes 27 percent of the times, 2 people

come 27 percent of the times and so on.

If we start adding 0.135 plus 0.27 is 0.405 plus 0.27 is 0.675 plus 0.18 is about 0.855

0.951, we realize that around with p equal probability of 5 it almost reaches 1, but then X

can take any value. So, as small x becomes larger the probability becomes very very

small in a Poisson random variable. Though we are not going to prove this so probability

of X equal to x becomes smaller expected value of the random variable is lambda the

variance is also equal to lambda.
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Customers arrive at an average rate of 10 minutes assume a Poisson process what is the

probability of 6 people arriving in the next 1 hour. So, lambda is 6 per hour 10 minutes

so 6 per hour, p of 6 is e to the power minus lambda lambda power x by x factorial e to

the power minus 6 into 6 to the power 6 by 6 factorial which is 0.1606. So, even on an

average  6  people  arrive  in  an  hour  on  an  average,  but  then  we  realize  their  actual

probability of 6 people arriving in an hour it is very small.
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So, let us continue on this topic with a little bit of discussion as we have been doing in all

previous topics.
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So, we now have a match the following, so assume that X is a Poisson random variable

and Y is a binomial random variable. So, we try to match mean of X so mean of the

Poisson variable is lambda so mean is lambda, expected value of Y so Y is a binomial

random variable so expected value is equal to n p; variance of Y, Y is a Y is a binomial

variable so n into p into q r n into p into 1 minus p which is shown here probability that

X equal to 1 X is Poisson. So, probability that X equal to 1 is the equation is e to the

power minus lambda lambda to the power X by X factorial 

So, when we put X equal to 1 X factorial is 1, so e to the power minus lambda into

lambda to the power 1 which  is  lambda e to  the  minus  lambda chance  of  failure  5

binomial, so binomial we define success and failure. So, chance here is probability, so

probability of success is p probability of failure is 1 minus p probability that Y is equal to

n binomial. So n successes n C x p power x q to the power n minus x, so n C n p to the

power n q to the power n minus n n C n is 1 q to the power n minus n is q to the power 0

which is 1 and therefore the value is n C x p power x q power n minus x, n C n p power n

q to the power n minus n which is p to the power n.
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Now, let us look at some situations and try to study them past data indicate that 5 percent

of the arriving parts have defects, 1000 parts have arrived and the inspector picks 25 at

random and tests them for defects. A Bernoulli assumption is incorrect because of finite

population one may disagree with this one can say that 1000 parts are large enough for a

population. But then we could take this has to be reasonably large and continue and that

is exactly how most of inspection also happens, that we take a reasonably large number

and then we take a small fraction of them to do the inspection.

Binomial model can assume n is equal to 25 and p equal to 0.05. So, 5 percent so it

depends on what we define a success and what we define a failure. So, if defect is a

success then n equal to 20 p equal to 0.05 if not being defective is the success then p is

0.95. Assuming binomial the probability of the first 3 being faulty is 0.05 cubed it would

not p. So, this will be one minus 0.95 into 0.95 into 0.95 and so on
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Next one probability of winning a match is 0.4 assuming that there are no draws or ties

or no results and so on, which has a higher probability win win win FFF is lose or fail

and win win win fail  fail  win win and failed.  Now we look at  try  to  model  this  as

binomial then we realize that out of 6 matches 3 victories and 3 defeats is the probability

that we are looking at. So, the sequence does not matter I think that is that that is a big

learning from this the sequence does not matter. So, probability of 3 wins irrespective of

the order in which they arrive is the same. So, this will be n C x p power x q to the power

n minus x. So 6 and 3 so we could do this 6 C 3 0.4 to the power 3 0.6 to the power 3

which works out to be 0.276.

A die has 4 sides pasted red and 2 sides pasted green it is rolled 6 times which has a

higher probability 4 red and 2 green or 3 red and 3 green. Even though this question is

about  a  die  so it  is  not  about  the  numbers  1 to  6,  therefore  we should  not  use the

probability of 1 by 6 and so on.

Now, this has 4 sides pasted red and 2 sides pasted green, so if we define red as a success

then probability of success is 4 by 6 which is 2 by 3 and probability of failure is 1 by 3.

Now we have to find out probability of 4 red and 2 green which is given by n C x p

power x q to the power n minus x. So, we would have 6 times it is rolled so 4 red, so 6 C

4 2 by 3 to the power 4 1 by 3 to the power 2 which is 0.329 and the other one is 6 C 3 2



by 3 to the power 3 1 by 3 to the power 3 which is 0.2195 and therefore 4 red and 2

green has a higher probability than 3 red and 3 green.

Now, 2 separate teams have to write code which is merged to form the final code before

testing, each has a 50 percent chance of completing in time. Is there a 50 percent chance

that the testing will start in time no, it would be one could take 1 by 2 as success and 1

by 2 as failure because of the 50 percent and then we realize the answer is actually when

it started in time will be both will be successful. So, 2 C 2 half to the power 2 half to the

power 2 minus 2 which is 1 by 4, another way of doing it is probability that term team a

successful is 0.5 team B successful 0.5 both being successful is 0.5 into 0.5 which is 0.25

and therefore we do not have a 50 percent chance of starting the testing in time.
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Now, a jeweler while fitting a gem into an ornament breaks at 1 percent of the times, if

he works on 100 stones what is the probability of breaking at least 2 stones. So, we could

model this as binomial or Poisson. Poisson would give us a lambda, so 1 percent of the

times he breaks out of 100 times. So, we can take lambda equal to 100 into 1 percent

which is 1 and therefore Poisson breaking at least 2 stones is 1 minus probability of

breaking no stone less probability of breaking 1 stone. So, each would become 1 by e

therefore, the answer is 1 minus 1 by e minus 1 by e which is 1 minus 2 by e which is

0.2641.



Now, if  we use binomial  then we would have 1 minus probability  of 0 break and 1

breaking. So, 1 minus 0.99 to the power 100 minus 100 C 1 which is 100 into 0.01 in to

0.99 to the power 99 which on simplification gives us 0.2642. So, we also observe that in

this instance either a binomial way of approaching it or approaching it as Poisson gives

us the same probability. There is a 10 percent chance that a cow eats a harmful plant and

becomes sick, what is the probability that all 10 cows are not sick when they graced

yesterday in an area that has these plants try binomial and Poisson. So, p is 0.9 because

there is a 10 percent chance that the cow can become sick, therefore probability that all

the cows are not sick is 0.9 to the power 10 which is 0.3487.

So, if we look at poison 10 percent chance there are 10 cows, so lambda is 1 X equal to

0. So e to the power minus 1 e to the power minus lambda lambda to the power X by X

factorial so e to the power minus 1 1 to the power 0 by factorial 0 so e to the power

minus 1 which is 0.3678
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Batsman on an average hits a 6 every 10 balls what is the probability that he hit 6 sixes in

an innings where he faces 30 balls. So, every 10 balls he hits one 6, so p equal to 0.1 q

equal to 0.9 and then we have to do out of 30 what is the probability of hitting 6 sixes.

So, 30 C 6 0.1 to the power 6 0.9 to the power 24 which is 0.032, when we do a Poisson

so he hits a 6 every 10 balls so 30 balls so lambda is equal to 3 and x is equal to 6 sixes



so probability is 0.0504. So, p of 6 is equal to e to the power minus 3 into 3 to the power

6 by 6 factorial 0.0504.

Poisson in binomial we have used alternately for some problems you have actually used

both, it is also possible to show that binomial approaches Poisson when n is large and p

is small and it approaches Poisson distribution and therefore we would find that in some

cases the answers are close, while in some cases the answers are slightly different. So,

with this we complete our discussion on binomial and Poisson models and in the next

lecture we would look at the normal distribution and with that we would summarize the

course and wind up the course after we study normal distribution.


