Advanced Engineering Mathematics Lecture 35

Example 4. Consider $A = \begin{bmatrix} 2 & 1 \\ 3 & 5 \end{bmatrix}$. Find the characteristic equation.

Solution. Let $\lambda \in \mathbb{F}$. Then, the characteristic equation is $\det(A - \lambda I_2) = 0 \implies \begin{vmatrix} 2 - \lambda & 1 \\ 3 & 5 - \lambda \end{vmatrix} = 0 \implies \lambda^2 - 7\lambda + 7 = 0.$

Cayley–Hamilton Theorem. Every square matrix A of order n satisfies its own characteristic equation.

Example 5. Verify the Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 2 & 1 \\ 3 & 5 \end{bmatrix}$. **Solution.** The characteristic equation for A is given by $\lambda^2 - 7\lambda + 7 = 0$ as we found out previously. Goal: $A^2 - 7A + 7I = \vec{0}$

L.H.S.
$$\implies A \cdot A - 7A + 7I$$

 $\implies \begin{bmatrix} 2 & 1 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 3 & 5 \end{bmatrix} - 7\begin{bmatrix} 2 & 1 \\ 3 & 5 \end{bmatrix} + 7\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
 $\implies \begin{bmatrix} 7 & 7 \\ 14 & 28 \end{bmatrix} - \begin{bmatrix} 14 & 7 \\ 21 & 35 \end{bmatrix} + \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix}$
 $\implies \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \implies \mathbf{0}_{2 \times 2} \implies \text{R.H.S.}$

Example 6. Using the Cayley-Hamilton theorem, find the inverse of $\begin{bmatrix} 2 & 1 \\ 3 & 5 \end{bmatrix}$. **Solution.** We know $\begin{vmatrix} 2 & 1 \\ 3 & 5 \end{vmatrix} = 7 > 0$. Again,

$$\begin{aligned} A^2 - 7A + 7I &= 0 \\ \Longrightarrow A(A - 7I) &= -7I \\ \Longrightarrow A^{-1} &= -\frac{1}{7}(A - 7I) \\ \Longrightarrow A^{-1} &= \frac{1}{7}\left(\begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix} - \begin{bmatrix} 2 & 1 \\ 3 & 5 \end{bmatrix} \right) \\ \Longrightarrow A^{-1} &= \frac{1}{7}\begin{bmatrix} 5 & -1 \\ -3 & 2 \end{bmatrix}. \end{aligned}$$

Proposition 1. If A is a singular matrix, then 0 is an eigenvalue of A.

Proposition 2. The eigenvalues in a diagonal matrix are its diagonal entries.

Proposition 3. If λ is an eigenvalue of a non-singular matrix, then $\frac{1}{\lambda}$ is an eigenvalue of A^{-1} .

Eigenvector. Let A be an $n \times n$ matrix over a field \mathbb{F} . A non-null vector X belonging to $V_n(k)$ is said to be an eigenvector of A, if there exists a scalar $\lambda \in \mathbb{F}$ such that $AX = \lambda X$ holds. **Example 7.** Let $A = \begin{bmatrix} 1 & 3 \\ 4 & 5 \end{bmatrix}$. Find the eigenvalues and eigenvectors of A. **Solution.** Let $\lambda \in \mathbb{F}$. Then, $\det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 3 \\ 4 & 5 - \lambda \end{vmatrix} = 0 \implies \lambda = -1, 7$. Let $X \in \mathbb{R}^2$ be the eigenvector corresponding to the eigenvalue -1, then

$$AX = \lambda X$$

$$\implies \begin{bmatrix} 1 & 3\\ 4 & 5 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = -1 \cdot \begin{bmatrix} x_1\\ x_2 \end{bmatrix}$$

$$\implies \begin{bmatrix} x_1 + 3x_2\\ 4x_1 + 5x_2 \end{bmatrix} = -\begin{bmatrix} x_1\\ x_2 \end{bmatrix}$$

$$\implies \begin{bmatrix} 2x_1 + 3x_2\\ 4x_1 + 6x_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix}$$

We get $x_1 = -\frac{3}{2}c$, where $x_2 = c \in \mathbb{R}$. Then, the required eigenvector is $X = \begin{bmatrix} -\frac{3}{2} \\ 1 \end{bmatrix} c$; $c \in \mathbb{F}$. For $\lambda = 7$, we have

$$AX = \lambda X$$

$$\implies \begin{bmatrix} 1 & 3 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 7 \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\implies \begin{bmatrix} x_1 + 3x_2 \\ 4x_1 + 5x_2 \end{bmatrix} = \begin{bmatrix} 7x_1 \\ 7x_2 \end{bmatrix}$$

$$\implies \begin{bmatrix} -6x_1 + 3x_2 \\ 4x_1 - 2x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

We get $x_1 = \frac{1}{2}c$, where $x_2 = c \in \mathbb{R}$. Then, the required eigenvector is $X = \begin{bmatrix} \frac{1}{2} \\ 1 \end{bmatrix} c$; $c \in \mathbb{F}$.