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Last lecture, we have given many examples of the vector spaces and seen that, most of 

them, they are the metric spaces. 

(Refer Slide Time: 00:30) 

 

For example C a b, l p, l infinity, these are all vector spaces and the metric, which we 

have defined on it, in a usual way, the distance between the two points and they form the 

metric space. But, so far, the notion of the distance d and the addition and scalar 

multiplication, which you are using and formation of the vector space for these classes, 

does not have any relation. So, the definition of the metric space, or the way in which we 

are getting the metric space, will not be a very fruitful thing. We cannot develop a 

fruitful theory, when we start with the concept of the distance notion, in this fashion. 



So, we are interested to define the metric in some other way, which has a relation 

between the addition and a scalar multiplication, as well as the notion of the distance. So, 

for this, we introduce a concept of the norm, which has a relation with plus and dot and 

then, with the help of the norm, we will introduce the notion of the distance on it, so that, 

we can get a useful theory for further developments. So, before it, what is the normed 

space? We define the normed space, we define the normed space, normed space. A 

normed space is a vector space, vector space, with a norm, with a norm defined on it. 

A Banach space, a Banach space is a complete normed space, where the completeness, 

complete in the metric, in the metric introduced or defined by norm. So, what is the 

normed space? It is a vector space X with an operation dot, plus and dot vector addition 

and scalar multiplication and at norm, is introduce on it. So, this complete structure, we 

call it as a normed space and in short, we denote as this. We understand, X with an 

operation plus and dot, and norm is a norm defined on it. Banach space is a complete 

normed space; complete means, every Cauchy sequence in it, must be a convergent one. 

So, when you say a Cauchy sequence convergent, it converges in the norm of X, or in the 

metric introduced with the help of norm on it, clear. 

So, this involves the concept of norm, first. Vector space, we have already introduced. 

Now, what is this norm? We define the norm as, we define the norm as, a norm on a real 

or or a complex vector space, capital X, a real or complex vector space capital X, is a 

real valued function on X, whose value at an x, belonging to capital X, is denoted by 

norm of x, which satisfies the following properties, which satisfy the following…Yes, it 

satisfies following properties. So, a norm on a real or complex vector space X is a real 

valued function on X, whose value at an x is denoted by norm of x, which satisfies the 

following properties. 
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The properties are, first property, we say N 1; that is, property of the norm. The norm of 

x is greater than equal to 0; it cannot be a negative quantity. Then, N 2, the norm of x 

equal to 0, if and only if, x is an identically 0 vector, theta, is identically 0 vector or 0 

element, identically 0 element. N 3, the third property is, the norm of alpha x equal to 

mod alpha into norm of x, where alpha is a scalar quantity, and this alpha belongs to the 

field of the vector space X; if x is real, the alpha will be real; if x is complex, the alpha 

will be a complex. And, last property is, the norm of x plus y is less than equal to norm x 

plus norm y. x plus y, norm. So, if this four properties are satisfied, then, we say, this X 

with the norm, is a normed space. Then… 

So, then, X, with this, is a normed space. So, basically, what we are getting is that, norm 

is nothing, but a function, from a vector space X to R; you can say, the R 0, nonnegative, 

real quantity, a real valued function, such that, the image of x goes to norm of x. Each 

point x and image x, for any x belongs to capital X; and that, this norm satisfy these four 

properties. 

So, when this satisfies, we say it is a norm and the corresponding space is called the 

normed space. If we look this vector space X, a set of vectors in the three dimensional 

plane, suppose R 3, then, we have these properties, which are enjoyed by vectors in a 

three dimensional plane. First thing is, the length of any vector A B, the length of this 

vector A B, can never be 0, negative, length of the vector can never be negative. So, if I 



denote the length of the vector A B as x, mod of x, this is the length of the vector A B; 

then, this length can never be a negative. It means, it is always be greater than 0 or at the 

most, 0, when b coincide with a; that is, the x becomes 0. So, the first property says that, 

it is the generalization of the length of the vectors. 

Second property is, first and second, third property says, if suppose, I multiply a vector A 

B by a alpha, where alpha is a scalar quantity, so, mod of…If alpha is less than 1, then, it 

will reduce; alpha is greater than 1, over mod 5, greater than 1, less than 1. So, 

accordingly, it has a, length is changing. So, what that effect, it will affect the mod of 

alpha into the length of the vector. Then, third property says that, the sum of any two 

sides of a vector in a triangle can, can never be less than the third side. So, third side, this 

is our vector x; this is vector y; this will be the x plus y vector. So, sum of these two 

sides of the vector will always be greater than equal to the length of the third side. 

So, that is why, this property of the triangle property also. So, this concept of the norm, 

which we have introduced, is nothing, but the concept of the length of the vectors in a 

general metric, general vector space. When we go for that R 3, we get vectors and the 

length of the vector has been generalized, this concept, to an arbitrary class capital X, 

which is a class of all the elements, may be a sequence, may be function, which forms 

the vector space. So, the norm generalizes the concept of the length of the elements of a 

vectors, in a arbitrary vector space. So, that is the…clear? 
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Another thing, which we can note, we can note here is that, if we introduced d of x y as 

the norm of x minus y, where x and y are any arbitrary elements of X, then, you will see 

all the properties of the metrics are satisfied. First is, d of x y will always be greater than 

equal to 0, because the norm cannot be negative. Then, if it is 0, it means, x minus y 

must be 0. So, x must be equal to y. So, x must be equal to y. The third property, if, 

suppose, I interchange the x and y; instead of this, I write y x; both will give the same 

value, because the interchanging x and y will not affect, because, it is a nonnegative 

quantity. So, negative sign will not affect. So, y minus x, it will remain that. 

Then, other property of d of x y is less than equal to d of x z plus z; that also is satisfied. 

So, all this properties, this property, which is equal to norm of x minus y, which can be 

written as norm of x minus z, z minus y and that will be again, less than equal to norm of 

x minus z plus norm of z minus y and that is equal to d of x z plus d of z y. So, the 

properties of the metrics are satisfied, as soon as we introduce the concept of the 

metric,in terms of the norm and this gives a metric. So, X d becomes a metric space; X, d 

becomes a metric space, clear. It means, every normed space is a metric space. So, as a 

result, you can say, every normed space is a metric space. 

Every normed space is a metric space, clear. Because, whenever we take norm, it can be 

converted into metric. But converse need not be true; but converse need not be true, in 

general; that is, all the metric spaces may not be a normed space. For example, if we 

consider the class S, the set of all sequences, bounded or unbounded sequences, bounded 

or unbounded sequences of real or complex number, numbers and introduce that notion 

and define d x y as sigma 1 by 2i, i is 1 to infinity, mod of x i minus y i over 1 plus mod 

x i minus y i, where x is, x is x i, i is 1 to infinity, belongs to capital X, y which is y i, i is 

1to infinity, belongs to capital X, ok. 
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So, if we look this metric d, then, we have already seen that, this forms a metric space; 

that S d will be a metric space, is a metric space. You have already seen. Is it a normed 

space? The question is, is it a normed space? The answer is no. 
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Why? It means, those properties of the metric space, which we have introduced, those 

property of the normed space, all the properties are not satisfied; that is, this property 

which we have introduced, the norm of x is greater than equal to norm x equal to 0, alpha 

x equal to this and so on is not… all property may not be satisfying. So, let us suppose, it 



is a normed space. It can be defined with the help of the norm. So, if it is so, then, let us 

see that, d of x 0, suppose, it is the norm of x, which is equal to sigma 1 by 2 i mod of x i 

over 1 plus mod x i, i is 1 to infinity, is it not? Because, what is this norm x? It is the 

length of the vector. So, from origin, you are choosing the distance; so… 

Now, let us suppose, suppose d x y, x 0 can be written in terms of the norm as follows. 

Then, what should be the norm alpha x? This is equal to what, mod alpha x i alpha x i. 

Now, can you take alpha outside from here? If I take alpha outside, it is not possible; it 

cannot be, this cannot be equal to mod alpha into sigma of this. It cannot be, that is, it is 

not equal to mod alpha into norm of x, is it not? Because, this is not…So, mod, norm of 

alpha x is not equal to mod of alpha into norm of x; that is, norm alpha x is not equal to 

mod alpha into norm of x. So, the condition N 2, N 3 fails. Therefore, S cannot be a 

normed spaces. So, S, under this, is not a normed space. 
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So, though it is a metric space, but it is not a norm; or you can say, the norm, metric 

cannot be defined with the help of the norm; that is, that is, the metric d, that is, the 

metric d cannot be defined or introduced with the help of norm, of norm, as norm in the 

form norm, that is all. Right, d x y equal to norm of x minus y, we cannot introduce, 

because it does not form. So, what we conclude that, every normed space is a metric 

space, but all the metric space need not be a normed space, clear. 
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Now, let us see few examples, where it forms for both normed space as a metric space, 

as well as the metric space. So, examples of normed spaces. So, first example, Euclidean 

space, Euclidean space R n and unitary space C n, C n. R n means set of all n-tuples, 1 to 

n, where x i’s are real and they are reals only; n-tuples with reals and the metric concept 

is defined as under root of this thing. So, here we are introducing the norm of x on R n, 

we are introducing as sigma i is 1 to n mod x i i is square under root. R n is the set of all 

n-tuples, x i 1, x i 2, x i n, where x i’s are real and for each x belongs to R n and we 

introduce the norm as follows. 

Now, it satisfy all the condition of norms; that, as because, we are verifying for the 

metric and this metric d on R n can be defined as under root sigma i is 1 to n mod x i i 

minus eta i whole square, that is all, ok. And that is the metric. So, R n with this norm is 

a normed space, is a normed space and we call it, this as Euclidean space, Euclidean 

space, it will be normed space. Then, C n is the set of all x, say eta i, eta i, such that, i is 

1 to n, where eta i ‘s are complex number. They belongs to the complex set, complex set 

C; they are complex numbers, ok. And, introduce on this the norm of x R n as sigma i is 

1 to n, mod of eta i square under root, where eta i’s are complex numbers; complex, eta i 

are complex numbers, eta i’s are complex numbers C. 
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Oh, this is C n. This is C n. Now, if we look these two, actually, the difference between 

this, this norm of x n R can be written also, there is no point of writing the modulus here; 

you can write it this, in this form; this can be, in fact, should be written like this; under 

root sigma i is 1 to n, x i square, that is all. Why, because they are real. So, x i square 

will be positive, and we get; but here, we have to use this mod sign, because they are 

complex numbers. So, mod of eta i must be real. So, this basically, we can write this one 

or mod x i, there will no difference with, but here, you have to strictly use the mod, 

absolute value of this complex numbers and then, make the square. So, it forms this, 

clear. 

Now, as a particular case when you take R n equal to 3, then, it becomes the vector 

space. So, when n is equal to 3, then, the R 3 is the set of those point x, x i 1, x i 2, x i 3, 

such that, x i’s are real and the length of this mod x is under root x i 1 square, x i 2 

square plus x i 3 square. And, that is the length of the vector, of vector x in the three 

dimensional plane; and, which is nothing, but norm of x. So, in particular, we are getting 

the length, clear. Now, they form the normed space, is it ok. 
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Then, we, another examples, two, the space l p, l p, p is greater than 1. The space l p is 

the set of those sequences x, x i’s are real or complex number, R or C, such that, such 

that, sigma i is 1 to infinity mod x i i power p is finite, ok. And then, introduce the norm 

x l p as sigma i is 1 to infinity, mod x i i power p raised to the power 1 by p. So, it will 

form the normed space l p. It can be easy to verify that, this forms a normed space. And, 

in fact, if I introduce the metric d x y as sigma i equal to 1 to infinity, mod x i i minus eta 

i power p power 1 by p, where x and y are the points in the l p space, in the l p space, 

then, this forms a metric; l p under d is a complete metric space, is a complete metric 

space. 

Hence, l p with this norm is a Banach space, because, what is the definition of Banach 

space? We have introduced the Banach space as a complete normed space and 

completeness is tested under the metric, introduced with the help of norm. So, this is the 

metric, which we have introduced with the help of norm that, d x y is the norm of x 

minus y, l p and that is equal to this. So, this way, because this is nothing, but, if we take 

this part, it is nothing, but, this is equal to norm of x minus y, is it not. So, d of x y 

defined in terms of norm and with this metric, it forms a complete metric space. 

Therefore, l p with norm p is a Banach space. Similarly, now, here, you see, the elements 

are not vectors, are not, they are the infinite sequences. 



So, the elements are real, the infinite sequence of real or complex number and they form 

the…This is again a complete and completeness, how to test it? Completeness means, if 

a sequence, Cauchy sequence converges, then, it must be complete. So, when you say the 

Cauchy sequence converges, it means, that converge to a certain point. So, slowly, the 

distance between x 1 and x keep, keep on changing and reducing to 0. So, notion of the 

distance is important, when you test for the convergence of the sequence, whether 

Cauchy sequence or so. So, that notion of the distance, is introduced with the help of 

norm. So, a space which is a normed space, if a Cauchy sequence, every Cauchy 

sequence also converges in the metric introduced with the help of norm, then, such a 

space, we call it as a Banach space, clear. A complete normed space. So, this l p is one of 

them. 
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Now, another example is l infinity, l infinity space, the set of all bounded sequences; l 

infinity is the set of all bounded sequences of real or complex number. Set of all 

sequences x i i, i is 1 to infinity, where x i’s are real or complex and such that, such that, 

the supremum of this thing, i is finite; that is, set of all bounded sequences of real or 

complex numbers; and on it, if we introduce the concept of the norm as the supremum of 

mod x i i over i, then, this l infinity, l infinity under this norm, l infinity under the norm x 

norm infinity forms this one. 
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This is a normed space. And, not only this, it will be a complete normed space. It will be 

a…All the property of norms are satisfied and if we introduce the notion of the distance 

d x y on l infinity as norm of x minus y l infinity, where x and y, these are the elements 

of l infinity, then, this l infinity, under norm infinity, l infinity, this forms a Banach 

space. This forms a Banach space, because under this, it becomes a complete metric 

space; l infinity d is a complete metric space. So, this will be a Banach space it is a 

complete metric space, ok. l infinity comma, no. 

 l infinity comma d, complete, this is a Banach space. So, when you say, complete metric 

space means, l infinity d, it is complete metric space. Next is a C a b, set of all 

continuous functions, set of all real valued continuous functions defined over the closed 

interval a b. And, introduce the concept of the norm, norm of x 1; I am introducing two 

norms here; one is maximum of mod x t, x t, t lying between a and b, ok. Another way, I 

am introducing norm of x 2, as integral a to b, mod of x t d t, where the x belongs to C a 

b, ok. Now, both these forms a norm; C a b, under this and C a b, under this are normed 

spaces; that, one can verify without any problem. Both forms a normed space, because if 

we take the norm is greater than equal to 0, because you are taking absolute value, 

maximum of it, and if it is 0, then, maximum of x t equal to 0 means, the function x is 

such, which is identically 0, over throughout the interval a b; because once the maximum 

value of the function is 0, for all t belongs to, the function must be identically 0, clear.  



Similarly, the other property, if you take alpha x, here the alpha comes. So, mod alpha 

will come outside. And then, x plus y, again maximum of this sum is less than equal to 

sum of their maximum. So, again, this is true. Similarly, here, in this case, if it is 0 

means, this integral is 0; these are the non, continuous function and no alternative 

function, because the ((actual)) value is taken consideration; a and b are two finite points. 

Therefore, this has to be 0, x t must be identically 0 function. So, again, all the 

properties, we can verify, it forms a norm. So, this two spaces, the same space under the 

two different notion of the norm, forms the normed space. 
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But, if I introduce the concept of the distance notion, here, in t C a b, with the help of 

first norm, but C a b with the norm d 1, where d 1 x y, which is equal to norm of x minus 

y 1, is a complete metric space, is a complete metric space, is a complete metric; that is, 

if I introduce the d 1 as maximum of, maximum of mod x t minus y t, t ranges over a and 

b, then, under this metric, it forms a complete metric space. Hence, C a b, under the 

norm1, is a Banach space, is a Banach space. Because, this, we have already verified in 

the metric space; then, if it is a, metric is defined in this fashion, it forms a complete 

metric space. 

So, corresponding norm is a Banach space. While the C a b, with the metric d 2, where d 

2 x y is introduced in terms of integral is an incomplete metric space, incomplete metric 

space; that is, when we introduced d 2 x y as integral a to b mod of x t minus y t d t, then, 



it is an incomplete metric space, is it not?. That we have seen also, by taking a Cauchy 

sequence, Cauchy sequence in this form. Say here, when we start with this and then, go 

like this and in this fashion, define between 0 to half, then, this is half plus 1 by m and 

this is 1. So, between 0 to 1, the sequence x n is defined like this. It is a continuous 

functions, but it forms a Cauchy sequence, but it is not convergent, because the limit 

point comes out with this continuous function. 

So, it is an incomplete metric space. Hence, the C a b, with this norm 2, is not a Banach 

space. This is simply a normed space, but not Banach and…Clear? Because, it is not 

complete normed space. So, it is the incomplete normed space of this. Similarly, we can 

see other properties, other examples also. So, this will be, so many things are there. So, 

many examples one can say, which forms the metric space as well as the normed space. 

And, there are examples which forms only the metric space, but not the normed space. 

One of them is S, that we have seen. Now, this will be, this will be, again, we will have a 

general results, under what restriction, a metric, if it is introduced by a norm, what 

should be the restriction, so that, a one can obtain a metric, with the help of the norm; 

that is, a corresponding normed space, one can get the metric space with the help of…So, 

that lemma. 

A metric d, a metric d induced by, induced by a norm, by a norm on a normed space, on 

a normed space X norm, on a normed space X norm satisfies, satisfies the following 

properties, satisfy, number 1, d of x plus z comma y plus z equal to d of x y. Second one 

is, d of alpha x comma alpha y equal to mod of alpha d of x y, for all x, y, z belongs to 

capital X and alpha is a scalar quantity. So, what this lemma says, suggest that, if we 

wanted to test whether the given metric can be introduced with the help of norm, these 

two conditions must be satisfied. If any one of the condition fails, it means, the metric d 

cannot be introduced with the help of the norm; cannot be induced by the norm. 

In the earlier case, when we have seen, this metric, which we have S of, yes…If we look 

this metric, which we have defined, d of x y, d of x y equal to 1 upon 2 i mod of x i 

minus y i over 1 plus x…We have seen that, this is a metric, but not a norm. It means 

that, condition which we have introduced, both the condition may not be satisfying. Say, 

example, if I take second condition, introduce here; so, what will be the d of alpha? d of 

alpha x alpha y. What is this? This condition is, say sigma, i is 1 to infinity, 1 by 2 i and 

then, mod of alpha x i minus y i divided by 1 plus mod alpha x i minus y i, y i, is it not. 



This will be…So, can you take alpha outside? You cannot take alpha outside, because as 

soon as you take alpha, this 1 plus alpha. So, you cannot take mod alpha outside. It 

means, the condition second y is not satisfying. So, this shows that, if any one of the 

condition fails, then, the corresponding metric cannot be induced by the norm. 
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Let us see why it is so. The proof of this lemma is as, is very simple. If a metric d is 

induced by the norm, then, d of x y will be written as norm of x minus y, is it not. If that 

metric d is induced, if metric d induced, is induced by a norm, then, one can express d x 

y as norm of x minus y. So, what will be the d of x plus z comma y plus z? Is it not the 

same as norm of x plus z minus y minus z? But, z z get cancelled and finally, you are 

getting x minus y, which is equal to d of x y, clear. Second part. So, first is true. Second, 

if d of alpha x alpha y, then, this will be equal to norm of alpha x minus alpha y. So, this 

will be equal to norm of alpha x minus y, which is equal to mod alpha into norm of x 

minus y, because if this is a norm… So, once it is a norm, alpha can be taken outside 

with the modulus sign. So, we get this, which is equal to mod alpha d of x y, clear. 

So, what we see that, if a metric is induced by a norm, this two condition has to be 

satisfied. And, that is the criteria to judge, whether the given metric can be induced by 

norm or not. Lemma is a part, is a very, some identity you wanted to prove it; that is a 

identity which are used for the further…That, we call it as a lemma or (( )), it is just 

small results, you can say. But, theorem is that, when, in general, anything, which is 



completed, is it not? Theorem (( )) and corollary, as a part of the theorem; corollary 

comes, a means, the result which can obtained with the help of the theorem. Lemma is 

used to prove, in, which is helpful in proving the theorems. It is not that, very big, 

important results we call it as a… 

Now, the another concept of this metric space, we have the subspace and the 

corresponding sequence. So, definition of the subspace, or sub-normed space of a 

normed space. A sub-space Y of a normed space X norm, is a subspace of X, is a 

subspace of X, considered as, considered as a vector space, vector space, with the norm, 

with the norm, obtained by restricting, by restricting the norm on X, the norm on X, to 

the subset, to the subset Y, ok. This norm on Y, this norm on Y, is said to be, said to be 

induced by the norm on X. The subspace of a mean, if X be a vector space and then, if it 

is also a norm, a notion of the norm is introduced, so, x with norm is a normed space. A 

Y, which is a non-empty subset of X, this will form a sub-normed space, a subspace of a 

normed space, if the Y, with addition and multiplication forms a vector space; that is, Y 

must be a subspace of X and the restriction of norm on Y, of the norm of X, when it 

restrict on Y, then, this restriction, under this Y, must be a normed space; that is, this 

norm must be the restriction of the norm of X on Y, clear. 

This is the norm of X on Y. So, we are denoting…Clear? So, if this norm, it is a normed 

space, it is a subspace, then, we call it (( )). Then, how to define the subspace of a 

Banach space? Subspace of a Banach means, it should be a simply a subspace of that 

space; need not be, x be complete; y need not be a complete space, ok. So, subspace of a 

Banach space, we mean, it is simply a subspace of X, considered as a normed space. So, 

subspace of a Banach space is, subspace of Banach space X is a subspace only; 

considered as a subspace; this is a subspace of X, considered as a normed space, not a 

Banach space. So, this is important, clear. 

Means, that concept should not be in mind that, because, we are taking the subspace of a 

Banach space, so, subspace should also be a Banach space; it is not so. It is simply, must 

be a normed subspace, that is all. If, in addition, it is also a Banach space, that is a 

different matter. Suppose, it is a closed, Y is a closed subspace of a Banach space, then, 

it has to be a Banach also, clear. So, but, that condition in defining the subspace of 

normed space, the completeness is not required. So, thank you. Thanks 


