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We have discussed the Hilbert Adjoint operator of a bounded linear operator T, of T, 

which is a bounded linear operator from Hilbert space H to another Hilbert space H 2; H 

1 to H 2. And, we have introduced the Hilbert Adjoint operator T star is an operator from 

H 2 to H 1, such that, the inner product of T x y is the same as x T star y. And, this 

definition, if T is a bounded linear operator, then, it is shown that, T star will exist, is a 

bounded linear operator and both will have the same norm. This much we have discussed 

last time. Now, with the help of this Adjoint, Hilbert Adjoint operator we can classify the 

bounded linear operators and we can have it further, subclasses for the bounded linear 

operator, that we call it to be a self Adjoint operator, unitary operator, normal operator 

and so on so forth. 



So, with the help of this Adjoint, Hilbert Adjoint operator, we can define the following 

for the bounded - the self Adjoint operator, a bounded linear operator T from the Hilbert 

space H to Hilbert space H, on a Hilbert space H, is said to be, is said to be self Adjoint 

or Hermitian, if T star is equal to T; that is, Hilbert Adjoint operator of T coincide with 

the original operator T, then, we say, such an operator is a Hermitian operator or self 

Adjoint operator. Then, the operator T is said to be unitary, if T is bijective; bijective 

means, it is 1, 1 and onto. So, injective and surjective both. So, bijective and T star 

should coincide with T inverse; then, it is said to be normal, if T star T coincide with T T 

star. And this, we have seen that, every self Adjoint operator is normal operator; unitary 

operator is normal. So, as a remark, we can, we have seen, in fact, that self Adjoint 

operators and unitary operators are normal operator, are normal, is it not. Just by 

definition, if we just apply the definition, you get the condition of the normal operator 

satisfy; but the converse is not true. 
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But, normal operators need not be self Adjoint or unitary. And this also, we have seen, 

for example, we have taken the operator T which is 2 i i, i is the identity operator; and 

this, we have seen that, this operator T, when we find the Hilbert Adjoint operator, this 

is, the star means 2 i i and the corresponding inverse will be minus 1 upon 2 i i minus i 

over 2 i, sorry, this inverse operator will be, product of this should be 1. So, this will be 

minus 1 upon 2 i up, is it not; then only, you are getting i square is minus 1 and half half 

gets cancelled and we get. So, T star and T inverse is this and it is easy to verify that, this 



operator is a normal operator, but not, neither a self Adjoint nor the unitary operator. So, 

this we… So, up to here we can see. 

Now, as we know that, an operator, a linear operator defined on a finite dimensional 

space can always be represented by means of the matrix. And, if we fix up the basis, the 

order of the basis element, then, corresponding operator will be unique in nature. So, if 

suppose be an operator which is a bounded linear operator on a finite dimensional. In 

fact, every linear operator on a finite dimensional space will be a bounded linear 

operator, is it not? If T is a linear operator on a finite dimensional space X to Y, then, it 

must be a bounded linear, because continuity follow and continuity means, boundedness 

will be there. 

So, if T is an operator from, say, one finite dimensional space to the same finite 

dimensional space, let us say C n to C n, then, it can be represented by means of the 

matrix. Hence, the question arise, what will be the corresponding form of the Hilbert 

Adjoint operator of such an operator? Can we express the Hilbert Adjoint operator of this 

operator T, in terms of the matrix, which may be the conjugate transpose of the previous 

matrix or something else, clear? So, we wanted to write the relation for a Hilbert Adjoint 

operator, when T is defined over a finite dimensional Hilbert space. 

So, the relation, you can say, relation of T star, in terms of matrix, clear. Now, suppose, 

T is an operator from C n to C n, be a bounded linear operator. Suppose, we have this 

operator, which is a bounded linear operator. Since C n is a finite dimensional, n 

dimensional space, so, it is finite. So, clearly, even if I do not take the bounded, just if I 

take only linearity, then, clearly, T is bounded; because, because C n is a finite 

dimensional vector space. So, if an operator defined on finite dimension, it will be a 

bounded, linear operator will be bounded. So, it is a bounded linear operator. Let us fix 

the basis, fix up the basis for C n. So, it can be, so, T can be represented by means of a 

matrix, say, A, is it clear, by means of the matrix A. Now, C n is a n dimensional, where 

the inner product on C n, on C n, is defined as inner product of x y, equal to what? 

(( )) 

If x is, say, x i 1, x i 2, x i n; y is, say, eta 1, eta 2, eta n, then, the inner product, 

basically, is defined to be, sigma x i i eta i bar, i is 1 to n, and in fact, this is nothing, but 



what? This will be, in vector form if I write, it is the x transpose y bar, is it not? x 

transpose y bar. This is our way of defining the inner product. So, x and y are there. 

Therefore, if I take the T x, So, T is x. 
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 So, T x y, inner product of this, clear. T x y will be what? x is, x is replaced x transpose. 

So, T x will be T x transpose and then, y bar, is it not; but A B transpose is the B 

transpose A transpose. So, from here, we get x transpose T transpose, T transpose, or T, 

sorry, T is defined by A x, T is defined by A x. So, I will write, this is A x transpose y 

bar. T is, because T is a operator on a finite dimensional; it will be represented by the 

matrix A. So, it will be A transpose into y bar, is this clear or not. So, we are getting this 

one. Let it be 1. Now, again, T star is an operator from C n to C n, reverse page side. So, 

it is also, also, bounded linear operator, by definition; and since, it is finite dimensional, 

so, T star can be represented by means of a matrix, say B, by means of some matrix, say 

B. 

So, it will be T star of x. So, what will be this, x T x y. We know the T x y is equal to x T 

star y. Now, T x y, we have already defined as x transpose A T y bar. And here, this will 

be what, transpose of this into T star y conjugate, by definition; but T x transpose T star 

y is what, is the B y conjugate; because T star is defined by a matrix B. So, it will be 

equal to B bar y bar. So, if we compare these two, this implies that, B bar comes out to 

be the A transpose. It means, that is, the matrix B is coming to be the conjugate of 



transpose of A, clear. So, what we get it, if T is represented by a matrix A, then, 

corresponding Hilbert Adjoint operator is represented by the conjugate transpose of this 

matrix. So, we conclude, hence, if a basis for C n is given and a linear operator and a 

linear operator on C n is represented by a certain matrix, then, its Hilbert Adjoint 

operator T star, is represented by, is represented by the complex conjugate, conjugate 

transpose of that matrix, is it ok. 
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So, this is what we get it, representation of a Hilbert Adjoint operator, in terms of the 

matrix, clear. (( )) previously… 

Sir, we know that, if we fix the basis, then, always we can represent some matrix.  

Yes. 

But, if you take the sender basis, then, the, any vector and the ((conjugate)) vector will 

be the same. So, in that case, directly any vector should be represented by (( )). 

No, when we fix the basis, it means, it does not mean that, you are taking the particular 

basis, no. You are, basis, the elements of the basis, order is fixed. When you are taking 

the basis, it means, the order of that elements are fixed. So, throughout the calculation, 

you remain, keep that basis itself. So, every point x can be represented in terms of that 

basis and representation will be unique in that way. 

(( )) 

Slide is… 

(( )) 

What is your point? Achcha ok. So, what is the... 

My point is, if you take the any basis, then the representation is something (( )) the 

coordinate of y, equal to that vector, matrix representation and the coordinate of x, 

coordinate vector. And here, we are taking x and y is not coordinate vector, just any 

vector. 

No, no, it is not as, x itself is represented, when you say x equal to x i 1, x i 2, x i n, it 

means, x is represented in the form of… say, I…This is a… Suppose, I take any vector, 1 

0 0, a, an element, it will be represent in terms of the basis element. What is this basis 

element? x is e 1, say alpha 1, alpha 2 e 2, alpha n e n. When these are fixed, it means, 

when x is given, then, this coordinates, alpha 1, alpha 2, alpha n cannot take any other 

value except only one. So, it means this x i 1 e 1, x i 2 e 2, these are the, x i n e n, this 

will be the representation of x. So, x i 1, x i 2, x i n are fixed and that is why we are 

taking in terms of x i. 



Here x is also the coordinate, coordinate vector. 

X is the vector, a coordinate vector and because, this coordinates are determined because 

of the basis is fixed. 

Because order is fixed. 

Order is fixed. So, that is why, clear. So, I think it is ok or... 

Now, let us see the relation again, further. We know, in case of the general matrix or in 

matrix theory, if you remember, this is ok. Now, we know in the matrix theory, we say, a 

matrix A is Hermitian, if the conjugate transpose of this matrix coincide with A, is it not. 

And, skew Hermitian, with minus sign, if this is minus A. And, we say it is a unitary, if, 

if conjugate transpose of this equal to A inverse. And, we say it is normal, if A A bar 

transpose equal to A bar transpose A, is it not. 

Now, what is our definition, if you remember? We have defined the self Adjoint 

operators, one more sheet, where is it? How did you define the self Adjoint? This is the 

way. Here, we have defined T star is equal to T. What is T star? T star was coming to be 

the conjugate, complex conjugate transpose of this matrix. So, is it not a T star and this is 

T. So, we can say a matrix is Hermitian, when T star is equal to T; and that is why, we 

have told self Adjoint or Hermitian, clear. Similarly, for the unitary we can say. So, we 

can say from here is that, a matrix… So, we can say, matrix are Hermitian, Hermitian, if 

the corresponding operator T, if corresponding operator T is self Adjoint, is it ok; and we 

say, it is unitary, if the corresponding operator T is unitary; and it is normal, if the 

corresponding operator T is normal, is it ok. So, we can relate the theory of matrix with 

the operators clear. Now, we have few properties of the self Adjoint operator in the form 

of result. 
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So, first theorem, that is on the self Adjointness. If let, T from H to H be a bounded 

linear operator, linear operator on a Hilbert space, on a Hilbert space H, then, if T is self 

Adjoint, self Adjoint, then, the inner product T x x is real, for all x belonging to H. And, 

second is, if H is complex, is complex and inner product T x x is real, for all x belonging 

to H, then, the operator T, operator T is self Adjoint; operator T self Adjoint. Solution or 

proof. What is given is, T is a bounded linear operator and T is self Adjoint. So, given T 

star is equal to T. 

We want this to be real. So, consider inner product of T x x conjugate. If I prove, the 

conjugate of this is the inner product itself, then, it will be real. Now, this will be equal to 

inner product x T star x conjugate, is it not? And, this will be equal to, T is given to be 

self Adjoint; so, this is the same as x T x conjugate, because T star is equal to T, is it ok 

or not. Now, again, interchange the order. So, when you interchange the order, it is the 

same as T x x. So, this shows, the inner product T x comma x is real; nothing too much. 

For the part b, given H is complex. So, it means, the Hilbert space H should be a 

complex value; means, field of this scalar, should be a complex number. For real, it may 

not be, means, may not be true; we cannot get the conclusion. So, H has to be complex 

here. And, T x x real for all x, then, operator T is self Adjoint. So, this is given, T x x is 

real. What is given? Inner product T x x is real; it means, conjugate of this is the…But 

this, is the same as x T star x conjugate is the same as T x x; but this is the same as, T 

star x comma x is T x x; this is true for all x belonging to H. 
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Now, from here, we can write it, inner product of T star minus T x comma x is 0 for all x 

belonging to H. Now, if q x x is 0, only when, implies q is 0, only when, H is a complex 

space; otherwise, in case of the real, you have seen that, q x x is 0, in spite of q will not 

be 0; because, if you take the rotation operator, then, it can rotate the x through the 90 

degree and the inner product comes out to be 0, clear. But if H is a complex inner 

product space, then, in that case, this q x x is 0 for all x will imply, that q must be 0; that 

is, this is a 0 operator. So, this shows, T is self Adjoint. Is it ok? Otherwise, it cannot, 

clear. So, this two… 

Now, another property, for this composite. The product of the two bounded, the product 

of two bounded self Adjoint, self Adjoint linear operators S and T, on a Hilbert space H, 

is self Adjoint, if and only if, the operators, the operators commute, commutes; that is, if 

S T equal to T S, then, the product S T will be self Adjoint and vice-versa, if product S T 

self Adjoint, then, S and T will come here. So, what is given is, given S star is equal to S, 

T star is equal to T, because of the self Adjoint, is it not. Both are given to be self 

Adjoints. Now, what we want is, product S T star should be self Adjoint. So, S T star, 

consider this. 

Now, if you remember, yes, when you take the product UV star, it becomes V star U 

star. So, this will be equal to T star S star. So, start with this, then, this comes out to this, 

which is equal to T S. Now, if we assume the T S equal to S T, then, S T star becomes S 



T. So, if we assume, this is equal to S T, this is given, T S equal to S T, then, it will 

imply that, S T star equal to S T, is it not; and, that will give you the solution that, S T is, 

is self Adjoint, is it ok. Now, let us see the converse space; suppose S T is self Adjoint. 

Then, S T must be equal to S T star. S T star means, we are getting from here, this side, S 

T star means T star S star and this is equal to S T. So, T S equal to S T and that will 

imply, S T. So, vice-versa, this two, clear. So, this proves the result, is it ok or not? So, 

we can say, S T star equal to S T, if and only if, S T equal to T S. So, this completes the 

proof. 
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Now, next results shows, the sequence of the self Adjoint operator; means, if there are T 

1, T 2, T n are the sequence of self Adjoint operator, then, the limiting point of this, 

limiting operator, whether will it be also a self Adjoint or not. Now, this is given by the 

next result that, if there are certain conditions on T n, then, it will, the limit operator will 

also be a self Adjoint operator. So, what is this is result. So, let T n be, be a sequence of 

bounded self Adjoint, bounded self Adjoint operators from H to H on a Hilbert space H, 

on a Hilbert space H. Suppose, that T n converges, converges; say, T n goes to T, under 

which, under the norm of B H H norm of B H H; this is the norm of B H H, bounded, set 

of all bounded linear operator defined from H to H and the norm is defined as the 

supremum norm of T x x over norm x, where x belongs to H. 



So, T n converges to, that is, norm of T n minus T goes to 0 as n tends to infinity; that is 

true, where norm is the, is the norm on the space B H H, is it ok, B H H. now, what it 

says is, then, the, then, the limit operator T is a bounded self Adjoint, self Adjoint linear 

operator on H. So, what is given is that, T n is a sequence of bounded linear operator on 

H, where H is a Hilbert space and T n converges to T, under the norm of B H H; then, 

what it says is, T will be a bounded self Adjoint linear operator on H. Now, clearly, T is 

bounded. I think, it is obvious, or not. If sequence T n be a sequence of bounded linear 

operator, the limiting operator will also be bounded. Why, because, what is the norm of 

T; that can be written as, T minus T n plus norm of T n less than equal to… 

Now, this goes to 0 and this is bounded, finite, is it not. So, basically, this is finite; or you 

can start with norm of T x, then, you can take T n x minus T x and both. So, that will be 

bounded, sequence will be bounded. So, this is nothing, is it ok. Now, T is bounded. So, 

what is left is, we have to show the T star is equal to T, T is a bounded self Adjoint 

operator, T star is equal to T, is it not. That is, instead of this, we can show, that is, if I 

prove that, norm of T minus T star is 0, then, we can say, because norm of x is 0 means, 

x must be 0. So, T is equal to T. So, instead of showing this, I will prove this, which is 

easy to prove that, because the sequences are converging in the norm. So, we will use the 

norm for this, is it ok, fine. So, you start with this, norm of T minus T star; add and 

subtract T n. So, this will be less then equal to T minus T n plus T n minus T n star plus 

T n star minus T star, is it ok or not, clear. 

Now, this will be written as T minus T n plus, T n is a self Adjoint operators, is it not; 

given the T n be a operator, self Adjoint; this is given to be self Adjoint. So, T n star is 

equal to T n. So, this part will always be 0, and here, we, can we not write this thing as 

norm of T n minus T, that is all. Why, because, because of the reason, the T n minus T 

star, norm of this, is the same as T n minus T; self Adjoint operator, they have the same 

norm, is it not. 

(( )) otherwise, T n minus T will also be an operator… 

All be operator. So…So, you start… (( )). So, we are taking this thing, means, two times 

norm of T minus T n. Now, as n tends to, this goes to 0, as n tends to infinity. Therefore, 

norm of T minus T star is less than equal to 0; but norm cannot be negative. So, this 

implies that, T must be equal to… So, self Adjointness proved. 



Sir, when you prove anything like this for the norm, (( )) we are taking T as a (( )) 

vector… 

Here? 

Yes, here. (( )). This is the norm of, (( )) we can see the triangular equality. 
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That is, no, it is not, because, we have proved, established this inequality, in case of the 

operator. How did I prove it, if you remember, T 1 plus T 2, norm of this. We have taken 

supremum, norm of T 1 plus T 2 x, where the supremum is taken over x and norm x 

equal to 1, is it correct or not. Now, this will be, because T 1, T 2 are bounded, so, this 

will be, less than equal to norm of T 1 x plus norm of T 2 x, is it not; and supremum of 

this and supremum of this, is it ok, of norm. Now, this, supremum of this, over x belongs 

to H, where the norm x is 1, where the supremum is taken as where the norm x equal to 

1. So, this will be equal to norm T 1 and this will be equal to norm of T 2 less than equal. 

So, this shows less than equal to. So, basically, it behave as if it is a algebraic 

inequalities, but… 

Sir, why cannot you say (( )). 

Ok. 



But otherwise, (( )) particular, this T 1 and T 2 is an element of B H H, and B H H is a 

vector space… 

Yes. 

So, T 1 and T 2 will be vector. 

Yes, yes. 

So, they can… 

They can follow the triangular inequality. 

 But there every, but every vector space, that does not mean that, it will follow the 

triangular inequality. We have to establish, is it not. We have to establish, otherwise, the 

vector spaces are there; vector space itself require the triangular inequality, is it not; by 

the condition, if you go through the vector space definition, it requires the triangular 

inequality there. 

(( )) 

Only thing you can say, vector space, if T 1 T 2 are there, their linear combination all in 

there; but it does not mean that, an inequality will follow. 

(( )) in a vector space, if we can define a norm, then, that norm will follow the triangular 

inequality; otherwise, (( ))… 

No, norm, but we have to establish, because, it is not that every norm, is it not; 

sometimes, that, like our metric space, if I take, say X D is a metric space and if I define 

the norm in terms of the D metric, D x y over 1 plus D x y, it does not satisfy that one, 

that one, is it not, triangular, what is the norm. Norm, if I define in terms of sigma 1 upon 

2 i and so on, it does not satisfy the triangular inequality, is it not. Every norm, that will 

be problems. You know, it is not necessary to be there, because norm of alpha x is not 

there. So, that itself is not a norm; if I define that way, triangular follow, but it will not 

define the norm. If I introduce the norm as sigma 1 upon 2 i mod x i, over say, 1 plus 

mod x i, then, this is not a norm. 



Sir, this is not a norm. 

So… 

Sir, we cannot define (( )); this is only a metric. 

Metric only. 

Distance of metric space cannot be converge as a norm. 

Norm. So, once it is not a normed space, that is why that; though it is a vector space. So, 

that is why, it is not necessary. 

Sir, I was saying that, (( )) able to define a norm, then… 

If you are able to define the norm, then, it will follow; you have to establish also. So, this 

is what… Now, another results, which is also interesting, unitary operator, for the unitary 

operator. Let the operator U, operator U from H to H, and V from H to H, be unitary 

operator; unitary means, they are 1-1 onto and U star is equal to U inverse; unitary. Here, 

H is a Hilbert space, Hilbert space. Then, the following property holds; then, U is 

isometric, that, that is, norm of U x equal to norm of x, for all x belongs to H; b, 

isometric means, they are having the same norms, and norm of U equal to 1, provided H 

is not equal to null vector. 

c, U inverse equal to, equal to U star, U star is unitary, which is equal to U star is unitary 

and UV is unitary; e, U is normal and finally, we get, the last one, that is, a bounded 

linear operator T f 1, f, a bounded linear operator, operator T on a complex, on a 

complex Hilbert space H is unitary, if and only if, T is isometric and surjective; 

surjective means onto. 
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So, let us see the proof; proofs are simple. So, what the first, U and V both are given to 

be unitary. So, it is given, U star is equal to U inverse; V star is equal to V inverse; then, 

H is a Hilbert space, fine. Then, we have to show, U is isometric; isometric means, the 

norm of U x and, and norm x will be the same; the U does not transfer the distances; 

maintain the distances between x and y, the distance and the corresponding image will 

have the same distance. So, to prove the part a, consider U x norm square. This can be 

written as U x comma U x, in terms of inner product, but this will be equal to x comma 

U star U x; but U star is equal to U inverse. So, this will be equal to x U inverse U x, 

which is equal to x x; and this is true for all x. So, this shows, this is equal to norm x 

square; hence, for, follows. 

b, U in, norm of U is 1; it follows from here. From, follows from a; why, if I divide by 

this, norm U x by norm x, take the supremum over all x belonging to H, x is, norm x is 1, 

then, it is 1; follows from here. Nothing to…provided x is non-zero; norm of… 

otherwise, it will not. That is why, H is different from 0. Then, U inverse is unitary. To 

show U inverse is unitary. So, what we have wanted to show, first is, clearly, U inverse 

is bijective; why, because U is bijective. Because this is given and U and V are bijective, 

is it not, by definition. So, if U is 1-1 onto, the inverse will exist and inverse will also be 

1-1 onto. So, it is a bijective mapping. 



Then, next is, if I prove that, U inverse star is equal to U inverse, then, our result is ok. 

So, consider U inverse star, but U inverse is equal to what, U star star; because U is 

given to be unitary. So, U inverse is equal to U star. So, U star star is U; that can be 

written as, U inverse inverse; therefore, U inverse star is equal to U inverse inverse. So, 

U inverse is unitary, is it ok. Clear, U inverse is bijective as well as U inverse star 

becomes the U inverse inverse; because this is a U star is equal U inverse, no. So, that is 

all. 
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So, this follows. Then, next is, U V is unitary; U V is 1-1 onto follows because U is 1-1 

onto; V is 1-1 onto; the product will be 1-1 onto and... 

Now, consider UV star. This is by definition V star U star. V star is equal to V inverse; U 

star is equal to U inverse, but by definition, this is UV inverse. So, UV is unitary, clear. 

Then, e, e is U is normal. So, U is normal means, what is to be proved is, U is normal 

means, U U star must be U star U. So, U U star, U U star is equal U inverse, because U 

given. So, this is I, which can be written as U inverse U; but U inverse is U star U. So, U 

is normal. Now, last one, what is needed is, this, a bounded linear operator T on a 

complex Hilbert space is unitary if and only if, T is isometric and surjective, this. So, 

suppose T is isometric and surjective; isometric means, norm of U x equal to norm of x 

and surjective means, it is onto. Now, what is required to prove is, required to show that, 



T is unitary, T is… So, we wanted to show T is bijective and T star equal to T inverse, is 

it not. So, T is onto follows from, from this relation, sorry. 

Let us take, U, instead of this, let us take T, because T is isometric, because T is 

isometric. So, it satisfy this, norm of T x equal to norm x. It means, each point will carry 

to the same, the length, the length of this vector of each point, under the image will be 

the same, clear, and this is true for every x. So, there will be a 1-1 mapping; 

corresponding to each x, you are getting T x. So, two different x 1 and x 2, their length 

will be different; therefore, T x 1 will be different from T x 2, is it not. So, the one 

ontoness will follows from this, is it clear. So, we get, onto follows from, because this is 

given, now 1-1, sorry, 1-1ness. 

Sir, T is isometric… 

T is 1-1; T is 1-1, follows from here, yes. 

Sir, T is isometric; isometric means, that, (( )) space, if the operator is isometric means, 

there is a isomorphism between the two spaces… 

Isometric means, that… 

Isomorphism between the two spaces… 

No, isomorphism, them towards isomorphism; isomorphic is, isomorphic is a 1-1onto 

mapping, which preserve the operations. 

Which preserve the operations. (( )) 

 So, whenever we go for the normed space, then, it becomes the isometric. 

(( )) 

Isometric. So, length is the same. 

(( )) bijective… 

Ok. 



(( )) bijective and there is a (( )) this exists, the dimension of the two spaces must be 

same, from the… 

Otherwise 1-1ness; you wanted the 1-1ness, no. You can say from here, suppose, why, 

because, I am writing T of x 1 minus x 2, I take it; T is isometric. So, this will be equal 

to…Now, if I take this is equal to 0, x 1 equal to x 2; T x 1 equal to T x 2. So, if x 1 is 

equal to x 2, will implies T x 1 equal to… 1-1ness. So, basically T is 1-1; T is onto is 

already given in the problem; it is surjective. So, T is surjective; T is injective; therefore, 

T is bijective. 1-1 onto is a… Now, only thing we have to show, the T star T is the same 

as T T star. So, start with this, inner product T star T x comma x. Now, this can be 

written as T x comma T x, because of the property Adjoint, but T is isometric. So, this is 

the same as x x and this will be equal to i x comma x; but this implies, x comma x is 0, 

for every x belongs to H, where H is a complex Hilbert space; this is given; H is a 

complex Hilbert space. So, complex Hilbert space. 
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. 

Therefore, T star must be equal to T. Therefore, T star minus T 0. So, T star will be equal 

to T, is it ok or not? Oh sorry, T T star, this is, I am sorry, this is T star T, T star T and 

this is I; you are transporting this I. So, sorry. So, this is T star T minus I. So, T star T 

must be I. Now, we consider T star, T T star; this is equal to T T star and then, I, we can 

write T T inverse; this will be equal to T T star T T inverse, but T star T is already 

proved to be I. So, this is equal to again, I. So, what we conclude is, T star T is equal to T 



T star; hence, T star will be the inverse of T, because those product and which is coming 

to be I. So, one should be the inverse of the other, and this shows, T is our unitary, T is 

unitary, is it ok. 

Now, let us see the converse part. Converse follows easily. If T is unitary, then, it is 

isometric, because of the first property; by the first result. And then, second one, what we 

said is, second, what you have, if isometric and surjective, and surjective follows and 

surjective by definition; because unitary means, it is bijective. So, definition, by 

definition, it follow surjectiveness and because T is unitary, in the first case, you have 

already proved, T is isometric. So, this. So, this completes the proof. Thank you. Clear. 


