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So, in the previous lectures, we have covered metric spaces and normed spaces. In the 

metric space, what we have seen is that, the concept of the notion of the distance 

between the two point on the real line is taken as mode of x minus y and this concept has 

been generalized to an arbitrary set X, by introducing the notion of the distance d. Then, 

we have, instead of taking this set, simply set X, we have introduced the operations and 

considering the vector spaces V and then, on this vector space, we have introduced the 

concept of the norm. And, this norm generalizes the concept of the length of the vector x, 

of the vector x. 

In the normed space, we have also seen that, we can take any two points and also, we can 

add, we can multiply this by x. So, x and y are the two vectors; one can add in the 

normed space, the two vectors and introduce the norm of x plus y. Similarly, norm of 

alpha x can be defined. But what is missing here is that, in case of the set of all vectors, 

say x bar, y bar, z bar, there is a well-known concept, and useful concept, that is the 



known as the dot product of the two vectors, x bar dot y bar. If x bar, y bar is suppose, x 

1, x 2, x 3 in say, R 3 space, and y bar is y 1, y 2, y 3, that is also in R 3 space and this 

dot product, in case of the three dimensional vector space is nothing, but x 1 y 1, x 2 y 2 

plus x 3 y 3. 

This dot products also leads the another concept, which is called the orthogonality of the 

two vector. We say the two vector x bar and y bar, they are orthogonal, if x bar dot y bar 

is zero, clear. So, this concept of the orthogonality, and concept of the dot product, so 

far, has not been generalized from R 3 space to an arbitrary vector space X. So, the 

question is, can we generalize this concept also to an arbitrary vector space, so that, the 

structure which you are getting will be more useful and can be, have a application, where 

the dot product or orthogonality plays the vital role. And, this leads to the concept of 

inner product space and as a particular case, when it is a complete inner product space, 

we say it is a Hilbert space, clear. 

So, idea of introducing the inner product and the Hilbert space, basically, is to enhance 

the concept of the orthogonality to a general arbitrary vector space, as well as, the 

introducing the parallel concept or generalized concept of the dot product. So, what is 

our inner product space and Hilbert space? An inner product space, or we also call it as a 

Pre-Hilbert space, space, is a vector space, is a vector space, together with an inner 

product, say, I am denoting this way, defined on it, defined on it, define on X, is a vector 

space X, with an inner product defined on X. The inner product, we will specify, we will 

define below. Just let me complete. And, whereas, I told the Hilbert space is a particular 

case, when we put a certain restriction. So, a complete inner product space, complete 

inner product space is known as an Hilbert space, known as Hilbert space, Hilbert space. 

The complete, we means that, we have, we should have a metric d, in terms of the inner 

product and under that metric, the Cauchy sequence converges. So, completeness means, 

completeness with respect to a metric, introduced in terms of inner product, clear. So, we 

are (( )). Now, entire thing which we have defined, depends on the definition of inner 

product; how to define the inner product? Because, once the inner product is defined, on 

a vector space, then, this sphere will be a inner product space and when the metric is 

defined in terms of the inner product and every Cauchy sequences converges, then, we 

say it is a Hilbert space. 
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So, inner product is defined as, inner product, an inner product on a vector space, capital 

X, say plus and dot, these are the operation, inner product on a vector space X is a 

mapping of X cross X to K, K is the field of scalar of the vector space X. Because, when 

we say X is a vector space, then, there should be a field attached to this. So, X is a vector 

space over the field K. It may be real, then, we say, it is a real vector space. When K is 

complex, we call it as a complex. So, a mapping from X cross X to K, this mapping, we 

call it as inner product, inner product, it, provided the following conditions are satisfied. 

So, that is, a map, that is, with, for each, with every pair of vectors x and y, their 

associated a scalar, we denote this by, which is denoted as this x comma y, x comma y 

and satisfy the following property, clear. 

Means, we are having, this is our X cross X. We are having a mapping from X cross X to 

K. So, pick up a two point x and y, clear. Say, x here and y here, and this is the mapping; 

so, which will associate this vector to, to the scalar x, y. Take two point x and y; x 

belongs to X and y belongs to X; and, under this mapping, we get a scalar x,y, which 

satisfy the following properties. Number one, that inner product x plus y comma z is 

equal to inner product of x z plus inner product of y z. Second, the inner product alpha x 

comma y is alpha times inner product x y, where alpha is a scalar quantity, belongs to the 

K set. And, third is, inner product of x y is the same as inner product of y x, conjugate of 

this. Fourth property, inner product of x x is greater than equal to zero and if zero, if and 

only, if x equal to zero. 



So, if these four properties are satisfied, then, we say this structure X, under this 

mapping, is an inner product space I P S. Now, let us look, what is, what are these 

properties? The first property and second property, if I combine the first and second 

property, then, what we get is a remark, a conclusion, or say, remark. Remark is, if we 

take one and two together, then, this implies that, alpha x plus beta y comma z equal to 

alpha of inner product of x z plus beta of inner product of y z, clear. If I take the third 

condition, then, third shows that, alpha, inner product of x, say gamma y, equal to 

gamma y x conjugate, which is equal to gamma conjugate y x conjugate, which is 

gamma conjugate x y, clear. It means that, if I take a linear combination in the first 

coordinate, because this inner product is two coordinate, one and second; so, in the first 

coordinate, if I take a scalar, alpha times x and take this scalar outside, then there is no 

change, ok. 

But as soon as this scalar is available in the second coordinate, the sign is, the value 

changes; it becomes the conjugate of the original one. It means that, in the first 

coordinate, the linear property is satisfied; whereas the second coordinate, linearity is 

breakdown. In fact, it is semi-linear or because, only the conjugate part is there, in place 

of gamma; otherwise, if we take gamma y… 
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If we take here, say, inner product of x, say alpha 1 y plus alpha 2 y, alpha 2 z; then, this 

can be written as, x alpha 1 y inner product plus x alpha 2 z; and, that can be written as, 



alpha 1 conjugate x y plus alpha 2 conjugate x z, clear. It means, this alpha 1 and alpha 2 

can be taken outside, but there is a conjugate sign. So, it is linear, it is not linear, but we 

call it, such a thing as, a semi-linear. So, if we say, the result is or conclusion is that, 

inner product is linear, with respect to first coordinate, while a semi-linear, with respect 

to the second coordinate or conjugate linear; we can also say conjugate linear, conjugate 

linear, clear. 

So, so, so, if we combine both, with this, in this way, we say inner product is sesquilinear 

functional, sesquilinear functional; that is, one and a half times linear functional. Is it 

clear? Functional means, its value, scalar value. So, this is an example of a sesquilinear 

function. Now, what we have…Let us go through back, again, for this. The inner product 

on the vector space X, we have introduced the concept of inner product. Now, as I had 

spoken that, inner product, with the help of inner product, if I introduce the concept of 

the norm and the metric, then, it will be useful; because, this inner product will carry the 

extension of the dot product, as well as the orthogonality. 

So, we introduce, we define a norm of a vector x belonging to capital X, as norm of x 

equal to a null product x x under root; and, metric on X as d of x y equal to norm of x 

minus y, which is inner product of x minus y, x minus y under root. We will verify that, 

this is a norm and this gives you the metric on X, clear. All the conditions of the norm 

will be satisfied, except the last one, triangular inequality; we require a Schwarz 

inequality, before going for establishing the triangular inequality is satisfied. So, we will 

see this later, and once it is norm, this will definitely give a metric, because, this is 

defined in terms of the norm x minus y, which is already, we spoke. 

So, what this shows that, every inner product space is a normed space, is it ok; and, since 

the Hilbert space is a complete inner product space, so, every Hilbert space is a complete 

normed space; that is Banach space. So, every Hilbert space is a Banach space. The 

converse of this need not be true; that we will see. However, converse need not be true; 

that we will see there; that every Hilbert space, every normed space is not a inner product 

space; every Banach space need not be a Hilbert space. So, that, we will see. 
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Now, before going this, let us see a general results, which we call it as parallelogram law 

inequality. The, we claim that, every inner product space X, this, satisfy the 

parallelogram law, parallelogram law or parallelogram equality, parallelogram law or 

equality; that is, norm of x plus y whole square plus norm of x minus y whole square is 

two times norm x square plus norm of y square. The physical concept of this is that, if 

we have this parallelogram having, say, x and y are the sides, vectors, then, this will 

represent the vector x plus y, while this one will represent the vector x minus y. So, the 

sum of the length of this diagonal, norm x plus y square plus, square of the sum of the 

length of this diagonal is the two times sum of the squares, square of the sides, two times 

sum of the squares of the sides, is it not, x square plus y square. 

The proof is just simply based on the definition. If we take the left hand side, say, norm 

of x plus y squared plus norm of x minus y squared, then, this is equal to, by definition, 

norm of x plus y whole squared means, x plus y comma x plus y inner product and norm 

of this is, x minus y comma inner product x minus y, ok. Now, apply this. So, you take 

this inner product x comma x plus y, y comma x plus y, then, plus x comma x minus y, 

minus, you take it outside, because it is a scalar in the first coordinate, so, we get, y, x 

minus y. 

And, this will give further, x comma x plus x comma y plus y comma x plus y comma y 

plus x comma x minus, because minus 1 conjugate will be the same as minus, because it 



is real, so, minus x comma y and minus minus plus, y comma y. Now, you will see, this 

gets cancelled; y x, and somewhere y x is also, x minus, minus y; so, it is y x, sorry, this 

is x, then y, then x x minus y; then here, minus y, x minus y; then this, we are getting x x 

and here x y; then y x and y y; then x, oh, x x, x minus y; then, here it is changed, minus 

y x is left out, is it not. So, this one. So, this gets cancelled from here, and what you are 

getting is, two times, x x is the inner product, is norm x square and y y means norm y. 

So, this proves it, clear. So, what this shows that, if a vector space is an inner product 

space, then, it will satisfy, the inner product will satisfy the parallelogram law. It means, 

the norm which introduced by means of the inner product, that norm x is inner product x 

x under root, will satisfy this condition, clear. If I think other way around, suppose, a 

norm does not satisfy this inner product; then, obviously, we can say, that norm cannot 

be derived with the help of inner product; because, if it is derived with the help of inner 

product, then, it must satisfy the parallelogram law.  

So, there are example of the normed space, which do not satisfy the parallelogram law. It 

means, those normed space are not a inner product space, clear. And, that gives the 

counter example that, every normed space, that gives an example that, every normed 

space need not be a inner product space. For example, if I take, say, x is C a b, set of all 

continuous functions defined over the closed interval a b. So, since it is defined over 

closed interval a b, so, it will attain its maximum, minimum value and the norm of x is 

defined as the maximum of mod x t and t ranges from a to b. So, obviously, C a b, with 

this norm is a normed space, clear. Now, we claim that, C a b is not an inner product 

space, is not an inner product space. It means, the norm which you are taking, does not 

satisfy the parallelogram law; for any x, y, this is true for any, this inequality is true for 

any x, y, is it not, any x, y. So, if I take a particular x and y, which violate this condition, 

then, obviously, this space will not be a inner product space. So, let us take the (( )) the x 

and y…Choose x t equal to 1 and y t equal to t minus a over b minus a. Both are 

continuous functions. So, what is our x plus y t will be 1 plus t minus a b minus a. What 

is x minus y t? 1 minus t minus a b minus a, ok. 
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Now, the maximum value of this is defined as the norm. So, what is the norm of this? So, 

the norm of x under this, is nothing, but 1, because the maximum value of this. What is 

the norm of y? The maximum value of t minus a over b minus a, t ranges from a to b. 

Now, t minus a over b minus a, this function y, if I differentiate by prime t, it comes out 

to be 1 upon b minus a, clear. So, 1 upon b minus is positive. So, derivative is greater 

than zero. So, function is an increasing function. It means, its maximum value was 

attained at the point, t is b. So, when t is b, the maximum value of this will be 1, agreed; 

because, derivative y is positive, clear; y prime t is positive. So, y is increasing function 

and therefore, we get this maximum value is attained at the point t is equal to b. 

(( )) not possible. 

No, no, from the Lagrange (( )) theorem, greater than zero; so, it is a maximum. So, it is 

increasing function; increasing means, maximum value will attain at the end point. So, b, 

b equal to…Now, what is the norm of x plus y? The x plus y, again, this is 1 plus, this 1 

is ok; the maximum value of this is 1. So, maximum value is means, it is 2; norm of x 

minus y, the maximum value will be what? What is the maximum value? We are 

subtracting the things. So, we have to subtract the minimum value, so that, you get the 

maximum value. So, minimum value attained, when t is equal to a. So, the norm of this 

will be 1. So, we get 1, this is 1, is it not. Now, norm of x plus y is 1; norm of x minus y 

was 1. So, this is 2, this is 1 and here is 1. So, what we, left hand side, this thing, this is 



equal to 5, while the right hand side is two times norm x square; this is equal to only 4. 

So, parallelogram law is not satisfied; so, does not satisfy parallelogram law. Therefore, 

this is not a, C a b is not a inner product space. Though it is a normed space, but it is not 

inner product space. So, this is one of the example.  

Another example, we can say, l 2 space; X is l 2, or, we say l p. Let us take l p, 1 is less 

than p less than infinity. I take, and the norm of this, any point in this l p is sigma mod x i 

i power p power 1 by p, is it not, where x, x i 1, x i 2 etcetera, this is the elements of l p. 

And, we know, this l p, with this norm, is a normed space. In fact, it is a Banach space 

also (( )). This is also Banach space, Banach space. Now, if we choose x element as 1, 1, 

0, 0, 0 and let us take the y, 1 minus 1, 0, 0, 0; both are the elements in l p, because this is 

finite; so, summation is finite and you get, clear. Now, if we take x plus y, this is equal to 

2, 0, 0, 0; x minus y, 0, 2, 0, 0, and they are also in l p. What is the norm? Norm of x 

under l p, say l p, this is equal to what, 1 or 2 raise to the power 1 by p. x i 1 is 1. So, 1 to 

the power will be 1; x i 2 is 1. So, 1 plus 1, 2, to the power 1 by p and that is the same as 

norm of y a b. But what is the norm of x plus y 1 p? This is equal to 2 only, because 2 to 

the power p power 1 by p. x i 1 is 2. So, x i 1 to the power p power 1 by p and rest are 0; 

x minus y, this is equal to what, same as two. 

Now, if I square these two, what you get? So, whole squared. This is equal to what, 2 

plus 2, 2 square plus 2 square, that is 8 and what is the norm of x square plus norm of y 

square? Two times of this, which, this is equal to two times of, this is square and again 

this is square; so, in fact, 2 into 2 power p, is it ok or not? Clear? Now, if I want this 

parallelogram law or equality holds, this is only possible, when p is equal to 2; otherwise 

when p is different two, it will not be satisfied. 
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So, only when p is equal to 2, so, only when p is equal to 2, the parallelogram law holds, 

but while, when p is different from 2, the parallelogram law does not hold. It means that, 

l 2 is a inner product space, provided we satisfy, may be an inner product space, but l p, 

for p is different from 2, is not an inner product space; but l p is a Banach space. So, 

again, there is a example, where so many spaces are there, which are Banach, but not a 

Hilbert, or inner product, normed space, but not a inner product space, ok. Now, we will 

say, how this satisfy, l 2 is a inner product space. We have to introduce the notion of the 

inner product on l 2 suitably, so that, all the conditions of the inner products are satisfied, 

ok. Let us see how, inner product, that is our question, clear. So, l 2 is an inner product 

space, clear. 

What is l 2? l 2 is the set of those sequence x, such that, sigma x i square, i is 1 to infinity 

is finite, clear. If it is a real space, if it is complex, take the mod; square is finite. Now, 

introduce, define inner product on l 2. So, inner product of x y, I am defining as sigma x i 

i eta i conjugate, i is 1 to infinity, where x is, x i i, y is eta i belongs to l 2. Now, this may 

be complex, that is why conjugate is there. Now, this will satisfy all the property of the 

inner product. First is, if I replace x by alpha x plus beta y, here it will change. So, you 

can take alpha and beta outside. If I take y alpha here, then conjugate sign is coming. So, 

clearly, x 1 plus x 2 y that will be equal to 1, 2 eta i bar and that can be written as 1 eta i 

bar x i 2 eta i bar. 



So, that will be equal to what, inner product of x 1 y, x 2 y. Similarly, if we take inner 

product of x y conjugate is there, satisfied, is it not; obvious; inner product of x alpha y, 

alpha eta i conjugate. So, alpha bar is coming outside and that will be equal to…Then, 

what is our x x? x x is nothing, but sigma x i i x i i conjugate and that is equal to sigma i 

equal to 1 to infinity, i, 1 to infinity, mod of x i square. Now, this is positive. And, if it is 

0, then each of this must be 0, but each one is non-negative. So, individually…So, equal 

to 0 will implies that, x i i will be 0, for each i; this implies x must be identically theta (( 

)), ok. So, this. It means, this is an inner product space, under this inner product. And, 

corresponding norm will be x i i square power half, that is a inner product (( )). 
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So, norm of this, a norm on l 2, norm of x is the inner product of x x conjugate. So, this 

is equal to what, under root sigma mod x i square, i is 1 to infinity and that is what, we 

had know this. So, it is a inner product. So, this is one example. Another examples also, 

R 3, R n, R n C n, these are also inner product space, under the inner product defined as 

sigma x i i eta i bar, i is 1 to n, when it is complex number and we say, all verification. 

There is a space also l p a b, this space also we have discussed; set of all integrated 

function, whose pth integral is finite. So, here, a to b, set of all functions, functions x, 

such that, x t square d t is finite and the inner product of x y is defined as conjugate. We 

can just verify (( )). So, this (( )) if it is. 

(( )) 



L 1 is not, small l 1 is not a inner product space; except l 2, nothing is inner product 

space, ok. So, it is basically, it is a very small class. The inner product, all the Hilbert 

space is very small class, which is a subclass of the normed space, clear. Biggest class is 

the metric. Then, we have excuses to find the normed spaces, clear; because, every 

normed space, every metric space need not be normed space, clear; and, from normed 

space, we have further excused as the, the inner product. 

(( )) 

No, we cannot. We cannot define, clear; should be, first, the space must be inner product 

space; then, only you can introduce the l, clear. So, these are the few examples of the 

inner product space. Now, concept of the orthogonality. We have, let us introduce the 

concept of orthogonality, in terms of the inner product; orthogonality. An element x, an 

element x of an inner product space, x this, of an inner product spaces, is said to be 

orthogonal to an element y, belongs to capital X, if the inner product of this is 0; means, 

an X is an set and take element x, then, find out the inner product with other elements of 

X; and if the inner product comes out to be 0, then, those elements y 1, y 2, y n, we say x 

is orthogonal to those elements, clear. 

Similarly, if suppose, x is an element and A is a group of, a set of elements; we say x is 

orthogonal to the set collection A, if inner product of x a is 0, for every a belongs to A. 

Similarly, we define, x is orthogonal to, and this, sorry, here, and denoted as x is 

orthogonal to y. Similarly, when we say x is orthogonal to a set A, means that inner 

product of x a is 0, for every a belongs to A. However, we say the two sets are 

orthogonal; if, means, the inner product of a b is 0, where a belongs to A, b belongs to B, 

for every pair, for every pair, it is two. So, the concept of the orthogonality can be 

defined in terms of the inner product. That is (( )). Now, this inner product, this 

orthogonality will be used and in fact, most of these ((charm)) for the study of the inner 

product on the Hilbert space, is the orthogonality part. We get the projection theorem, 

etcetera; we know the projection, whenever any point, space is given, a point we wanted 

to drop the shorter distance, it is nothing, but the perpendicular distance. So, there is 

orthogonality (( )). 

Now, we have introduced the concept of the inner product and then, a concept of the 

norm is there, in terms of the inner product. So, first the inner product, then, we have 



generated the norms; and, we have seen that, every norm is not a inner product. Now, 

suppose, it is given that, this particular normed space is an inner product space. So, the 

normed space is given, but we do not know, what will be the inner product; but it is 

known, this will definitely a inner product. So, can we extract the inner product, with the 

help of the norm of that space? Do you follow me? An inner product is given, x inner 

product; then, one can introduce the norm, as the norm of x, under root x, inner product x 

x. 

Now, let us think a converse way. If the norm is given, norm of x is given, can you find 

the inner product x x, in terms of the norm, ok; where it is known that, this normed space 

is also an inner product space or the norm can be derived with the help of the inner 

product. 
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So, this is now, given by the polarization identity, identity. What is the polarization 

identity is that, in case of the real inner product space, case one, for a real inner product 

space, real inner product space X, the inner product x y, the inner product, the inner 

product x y is given by, is given by one fourth of norm of x plus y whole square minus 

norm of x minus y whole square. Means, a normed space is given, which is also an inner 

product space; then, one can find the inner product, obviously. This is to discover the 

inner product, to discover, rediscover the inner product from the, rediscover the inner 

product from the given norm, given norm, clear. 



So, these norms are known; we can find out the inner product x y, where it is known the, 

this space is real space. And, if the space is complex, for a complex inner product space, 

the real part of the inner product, of the inner product x y is given as, one fourth of norm 

of x plus y whole square minus norm of x minus y whole square and imaginary part of 

the inner product x y is given by, is given as one fourth norm of x plus i y whole square 

minus norm of x minus i y whole square, clear. Now, this can be derived very easily. 

This norm is given and it is given that, norm is also inner product. So, use the norm x 

square is equal to inner product x x; open it, you will get these things, immediately; 

nothing, ok. So, this polarization identity will help you in rediscovering the inner 

product, if it is norm. Now, there is one result, which we require for establishing the 

triangular inequality in order to prove the norm. That result is or lemma is known as 

Schwarz lemma, Schwarz inequality; it is not a theorem, Schwarz inequality. 

What he says is, an inner product, an inner product, inner product and the corresponding 

norm, and corresponding norm, satisfy, satisfy, this thing, norm of, sorry, satisfy 

modulus of inner product x y, modulus of inner product x y is less than equal to norm of 

x into norm of y, where the equality holds, holds, if and only if, x y, this set is linearly 

dependent set, clear. The proof is simple. The proof of this Schwarz is… So, first, we are 

taking, 7; this is 8. 
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Suppose, one of this term is 0; suppose, y is 0. Then, obviously, this inner product of x y 

equal to, less than equal to norm of x norm of y holds, is it ok or not; because 0, it is 0. 

So, nothing. So, if y is not equal to 0, if y is not equal to 0, then, let us consider, for any 

scalar alpha, for every scalar alpha, let us have norm of x minus alpha y whole square, 

yes, norm of x minus alpha y whole square. Now, this norm cannot be negative. So, it is 

always be greater than equal to 0. Now, this can be written as x minus alpha y comma x 

minus alpha y, which can be written as inner product x x minus alpha, minus alpha y. 

So, alpha, I am taking out; minus alpha y comma x minus alpha y; x x minus, x, first is x 

and then, x with this also; so, plus x minus alpha y; then, minus alpha y with this, ok. So, 

again, x x; here, this alpha can be taken outside, we get y x; and, when this alpha is taken 

outside, we get conjugate; y y and here is, when alpha is taken outside, we get, clear. 

Now, this is equal to conjugate plus alpha bar I take outside, alpha y y minus x y, is it ok. 

Now, choose alpha, such that, this part is 0; because, alpha is our own choice; alpha is 

any scalar. 

So, if I choose alpha this, means, alpha becomes x y over… So, from here, we get, 0 less 

than equal to minus x y y x over norm of y square, ok. So, norm y is non-negative. So, 

what we get, x y y x is less than or equal to norm x square norm y square, clear; but, 

what is this? This is the conjugate. So, we get from here is, modulus x into x y means, x 



y mod square; because this is the conjugate, is less than equal to norm x square norm. So, 

taking the square root, we get, we get the Schwarz inequality; that is it, clear. So, this. 

Now, when this equality hold... 

(( )) 

For other values, alpha, you can choose accordingly. Suppose, I take alpha equal to, say, 

suppose, 100; then, I can pick up the alpha 1 as alpha y 100, ok, so that, it gets result. 

We, we have to pick up alpha in such a way, so that, this condition satisfied, clear. 

Because, this is, what I am taking is a particular case. For any alpha, this is true; this 

result is true, for any alpha. So, I can choose particular alpha, such, for which this is 0, is 

it not; that is possible. Because, that particular alpha also satisfy this condition. So, it will 

not violate the assumption, which we have started. Therefore, this. And, when the 

equality holds? If the equality holds, this must be 0. If the equality holds, then, this must 

be 0; this must be 0, means, x equal to alpha y. So, x and y are linearly dependent. So, 

this. 

That is it. Thank you. 

 


