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Today, we will start looking at inference problems inference about multivariate normal 

distribution. So specifically, we have already introduced, what is a multivariate normal 

distribution, and what are the characterizing parameters of a multivariate normal 

distribution. So, today we will address the problem of inference about the multivariate 

mean vector mu and the covariance matrix sigma. 
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So, we have actually the following setup that it is a basically random sampling from 

multivariate normal distribution. So suppose, we have a population, multivariate normal 

population N p mu sigma. So, what we have here is this mu to be giving the mean vector 

and sigma to be the covariance matrix, we assume that sigma is positive definite. Now, 

the elements in mu; this mu vector is unknown, and so is the sigma matrix. So, what we 

do is, we take random samples from this multivariate population, and then try to build up 



the inference procedure concerning the unknown mean vector mu and the unknown 

covariance matrix sigma. So, what we do is,  we take a random sample X 1 X 2 X n be a 

random sample from this multivariate normal population and then using this random 

sample X 1 X 2 X n the random sample of size n will been the inference procedure about 

the mean vector mu and the covariance matrix sigma. 

Now, given this random sample the joint pdf of X 1 X 2 X n remember that it is a 

random sample and hence this X 1 X 2 X n are independent. So, that the joint 

distribution the joint pdf of X 1 X 2 X n is given by the following that i equal to 1 to n, 

then the pdf of the respective components X 1 X 2 X n. So, that this is f X i x i. So, that 

this is equal to i equal to 1 to n 2 pi to the power minus p by 2 determinant of sigma to 

the power minus half,  then exponent minus half x i minus mu transpose sigma inverse x 

i minus mu. So, this is …what is the joint pdf. So, this can be compactly written as 2 pi 

to the power minus n p by 2 determinant of sigma to the power minus n by 2 then 

exponent minus half summation i equal to 1 to n x i minus mu transpose sigma inverse x 

i minus mu. So, the first thing about this random sample X 1 X 2 X n from the 

multivariate normal distribution, the first question that; we are going to answer is that 

what is the sufficient statistic that is based on this random sample X 1 X 2 X n.  
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So, we move on to the sufficiency. So, we will be deriving sufficient statistic under 

various possibilities. Let us consider the first case, case one which is the most general 

case mu and sigma are unknown. So, we have both the two parameters characterizing 

this multivariate normal population, the mu vector and the covariance matrix sigma both 



of them are unknown. Now, let us consider this particular term which is present in the 

exponent this is a term which is present in the exponent, let us see how we can 

manipulate this particular term this is summation i equal to 1 to n x i minus mu transpose 

sigma inverse x i minus mu. So, we introduce an x bar term. 

Now, note that this derivation of sufficient statistic for the multivariate normal 

population goes along exactly in the same line as to what we usually do when we have a 

univariate normal population. So, we introduce this x bar vector which is the sample 

mean vector in this following way sigma inverse x i minus x bar the same adjustment in 

the second term as well. So, this now, we will split it into two terms this is one term here 

and this is the second term here and then take sigma inverse multiplication term by term. 

So, the first term will be x i minus x bar transpose sigma inverse x i minus x bar x i 

minus x bar and then this term multiplied by sigma inverse into this particular term now, 

that is a term which is independent of i and hence we will have n times x bar minus mu 

transpose sigma inverse x bar minus mu, and then the cross product term of this term 

multiplied by this and this second term out here and the two terms would be similar the 

two cross product terms and what will be having is the following that it is summation i 

equal to 1 to n x i minus x bar transpose sigma inverse x bar minus mu. 

Now, this is if we look at the two factor here it is basically coming from the cross 

product, because we having two terms which are similar just differing by transpose and 

the two terms is same. Now, what is going to happen with this particular term is the 

following. Let me put this as equation number 1. Now, if we look at this expression here, 

what is that going to give us note that this summation i equal to 1 to n x i minus x bar 

transpose sigma inverse x bar minus mu. Now, this term Now, this part here is 

independent of i and hence it can stay outside the summation. 

So, what we well be having is summation i equal to 1 to n x i minus x bar transpose and 

then that is post multiplied by this sigma inverse x bar minus mu which is independent of 

i. Now, what is going to happen when we look at the summation here, it is going to give 

us 0 , because it is the deviation from this mean vector mu x bar vector sample mean and 

hence this is going to give us n times x bar transpose minus n times x bar transpose. So, 

this is n times x bar transpose minus this x bar transpose times sigma inverse x bar minus 

mu and that is equal to 0 . So, this cross product term in equation number 1 this 

specifically. So, this term is going to vanish, because this is equal to 0.  
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So, we will have thus. So, this will imply that this summation i equal to 1 to n x i minus 

mu transpose sigma inverse x i minus mu, this term is equal to summation i equal to 1 to 

n x i minus x bar transpose sigma inverse x i minus this x bar. So, this is basically that 

term of here, what we have this as a first term and the second term remains as it is and 

the third term vanishes. So, we will have that n times x bar minus mu transpose sigma 

inverse x bar minus mu. Now, this is a scalar quantity and hence we can write this as 

trace of this term here summation i equal to 1 to n x i vector minus x bar vector transpose 

sigma inverse into x i vector minus this x bar vector leave the second term as it is n times 

x bar minus mu transpose sigma inverse x bar minus this mu. Now, trace of a plus b is 

trace a plus trace b and hence we can take the trace inside.  

So, we can write this as a summation i equal to 1 to n trace of this term which is inside 

the summation. So, this is x i vector minus, this x bar vector transpose sigma inverse x i 

minus this x bar vector leave the second term as it is; so, x bar minus mu vector 

transpose sigma inverse x bar vector minus this mu vector. Now, here we have trace of 

this particular quantity which is a scalar quantity. So, what we will do is we will use the 

result that trace of a b equal to trace of b a, where we considered this to be a first term 

and this to be second term. So, trace of a b would be trace of b a.  

So, this would be given by summation i equal to 1 to n trace of sigma inverse x i vector 

minus x bar vector that multiplied by this particular vector out here. So, that is x i minus 

this x bar transpose second term is left untouched sigma inverse x bar minus this mu. 

Now, this sigma inverse is something which is actually independent of this i index out 



here, we will once again make use of the fact that trace of a plus b is trace of a plus trace 

of  b and hence we can take this trace outside also. So, we will write this as trace of 

sigma inverse is independent of this i index and hence it can be taken outside the 

summation. So, what we have is trace of sigma inverse i equal to 1 to n x i vector minus 

x bar vector that multiplied by x i vector minus, this x bar vector transpose that plus the 

second term carried forward as it is. So, this is x bar vector transpose sigma inverse x bar 

minus this mu vector. 

Now, what is this particular term, if we look at this particular term here carefully it is 

nothing but a constant multiplier of the sample variance covariance matrix. So, we can 

write that as trace of sigma inverse times n minus 1 times s that plus n times x bar vector 

minus this mu vector transpose sigma inverse x bar minus this mu vector, where we have 

used the notation that n minus 1 times, s is the sample variance covariance matrix with a 

divisor n minus 1.So, that; that is equal to summation i equal to 1 to n x i vector minus 

this x bar vector into x i vector minus x bar vector it is transpose. So, this term here 

which was actually in the exponent of the joint pdf this was actually if we look at this 

term here. So, the term which we have simplified and reduced it into that form is nothing 

but here sitting in the exponent. So, we will go to that term there. So, we have that term 

as trace of sigma inverse n minus 1 times s plus n times x bar minus mu transpose sigma 

inverse x bar minus mu. So, we will use this term.  
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So, this would imply that the joint pdf of X 1 X 2 X n the random sample of size n from 

that multivariate normal distribution with mean vector mu and covariance matrix sigma 



is given by the following. That it is 2 pi to the power minus n p by 2 determinant of 

sigma to the power minus n by 2, and then the exponent term is what we have done 

simplification on. So, that is n minus 1 by 2 trace of sigma inverse s is that matrix, what 

we have defined in the last slide. So, this minus n by 2 x bar vector minus this mu vector 

transpose sigma inverse x bar minus mu. Now, when the joint pdf of X 1 X 2 X n is 

written in this particular form, it is easy now, to use the Neyman Fisher factorization 

theorem in order to derive what is the set of sufficient statistic, when we have both the 

parameters mu vector, and the covariance matrix sigma to be unknown.  

 Now, this is written in this form, I will say what these are basically. So, I am writing it 

in this way f x 1 x 2 x n, now this let me first complete this and then I will explain what 

these quantities are now, I am factorizing this particular joint pdf of X 1 X 2 X n in the 

form that the first term is a function only of x 1 x 2 x n. It does not include any parameter 

in this particular distribution the parameters are mu vector and the covariance matrix 

sigma and the second part is written as a function it is a function of mu and sigma and it 

is a function of x 1 x 2 x n the random sample only through x bar and s. So, this is a 

function which depends on mu sigma x 1 x 2 x n only through x bar and s. So, what are 

these functions from the joint pdf that we have written here. So, that let me put a number 

here equation number 2. 

 So, we will have this particular quantity here what we have defined. So, this f x 1 x 2 x n 

we will have to look for the terms into which depend on x 1 x 2 x n only. So, it cannot 

involve in a mu it cannot involve any element of sigma. So, this as we see that it is a 

constant function which is 2 pi to the power minus n p by 2 all other terms which are 

present here depends on mu and sigma. So, it cannot be separated from there. And the 

second function that we have introduced g mu sigma x bar and s is basically the rest 

which is determinant of sigma to the power minus n by 2 and then exponent minus n 

minus 1 by 2 trace of sigma inverse s minus n by 2 x bar minus mu transpose sigma 

inverse x bar minus this mu we close the bracket here. So, this is a term which depends 

on sigma, sigma is here and so it is here it depends on mu, mu is present here and it 

depends on x 1 x 2 x n the random sample only through the two statistic which is x bar 

vector the sample mean vector and s which is a sample variance covariance matrix. 

And hence if we use this particular factorization it is in the form of the Neyman Fisher 

factorization and hence by Neyman Fisher factorization theorem by Neyman Fisher 

factorization. We have X bar the random vector X bar the sample mean random variable 



vector and s is jointly sufficient for the unknown mu and sigma. So, this basically is a set 

of jointly sufficient statistic for the unknown parameters the mean vector mu and the 

covariance matrix sigma. So, if this is a set of sufficient statistic as in any other statistical 

inference problem instead of having carrying X 1 X 2 X n the entire set of random 

samples we can carry this X bar vector and this S the sample variance covariance matrix 

for all the inference procedure concerning this mu vector and covariance matrix sigma. 

So, this gives us the desired compression of the data without loss of information. So, this 

contains all the information that is present in X 1 X 2 X n about the parameter vector mu 

and the matrix sigma the population variance covariance matrix. So, this will be the 

jointly sufficient statistic, if we have both these two set of parameters rather to be 

unknown. Now, we move on to the second possibility where sigma is known to us.  
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So, we look at case 2 sigma is known and this mu vector is unknown. So, it is a 

theoretical possibility actually for all practical purposes what we usually have is both the 

mean vector mu and the covariance matrix sigma to be unknown, but it is a theoretical 

possibility that we have sigma matrix to be known, and the mu vector to be unknown. 

Then if this is the only parameter set present in this population we will try to compress 

the data. So, that it would contain every information that is present in the data about this 

vector mu. Now, how are we going to do that, now  note that we have this as a joint pdf 

of X 1 X 2 X n. So, we will use this particular form itself and then infer then use the 

Neyman Fisher factorization in order to get to this official statistic and what is that, the 



joint pdf of X 1 X 2 X n is once again what is going to be used in order to find the 

sufficient statistic.  

 So, this as we have seen is 2 pi to the power minus n p by 2 determinant of sigma to the 

power minus n by 2 e to the power minus n minus 1 by 2 trace of sigma inverse s this 

minus n by 2 x bar minus mu transpose sigma inverse x bar minus this mu. Now, if this 

is this we write it as another function f 1 x 1 x 2 x n. So, we are trying to reduce it to the 

form of the Neyman Fisher factorization. Now, the only unknown parameter in this case 

2 is the mean vector. So, we are trying to find out what is that particular function which 

depends on mu and also depends on x 1 x 2 x n through some statistic. Now, we will see 

that it can be reduced into this particular form, where the first function f x 1 x 2 x n is a 

function of x1 x 2 x n.  

So, that is basically a known function when we have x 1 x 2 x n to be given. So, this now 

takes the form that it is 2 pi to the power minus n p by 2. Now, note that sigma is now 

unknown to us,  we have assume then case 2 that sigma is known and hence this 

determinant of sigma is also known to us. So, this also is a function which is known and 

if we look at in the exponent the first term is n minus 1 by 2 trace of sigma inverse s. 

Now, sigma is known to us and so will be sigma inverse and s is a matrix which is based 

on x 1 x 2 x n only. So, this also thus would be absorbed in the first function. So, this is 

exponent to the power minus n by 2 trace of sigma inverse s.  

So, this entire function here thus is known to us if x1 x 2 x n is known to us and this g 

mu vector x bar. So, this is… thus the rest of it which is e to the power minus n by 2 x 

bar minus this mu transpose sigma inverse x bar vector minus this mu vector. So, what is 

the characteristics of this particular function, the second function it depends on mu well 

that is clear and it depends on x 1 x 2 x n through this x bar vector. Note that once again 

sigma is known to us and so will be sigma inverse, this is a function which depends on 

the unknown parameter vector mu and its dependence on x 1 x 2 x n. Now, is 

compressed through it is compressed in terms of this vector x bar.  

So, this in this particular form the factorization once again will be using the Neyman 

Fisher factorization by Neyman Fisher factorization. The Neyman Fisher factorization 

theorem will tell us that, this x bar vector random variable. So, this x bar vector is now, 

sufficient for the unknown mean vector. So, if both mu and sigma are unknown then x 

bar and s is jointly sufficient for mu and sigma if sigma the population variance 



covariance matrix is known, then x bar is sufficient for mu. Now, we look at the third 

possibility which once again is a theoretical possibility. 
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Suppose in the third possibility mu is known say equal to mu naught vector and the 

covariance matrix sigma is unknown. So, this is the set of …then we will try to find out 

what is the sufficient statistic corresponding to the unknown this sigma matrix. Now, the 

joint pdf we do not need to look at the form of the joint pdf that we had derived, we will 

take the original form the joint pdf of X 1 X 2 X n is 2 pi to the power minus n p by 2 

determinant of sigma to the power minus n by 2,  then this e to the power minus half 

summation i equal to 1 to n x i minus mu naught, because we have assumed that the 

mean vector mu is known to us and that is equal to mu naught. So, we plug in this 

particular value out here sigma inverse transpose x i minus this mu naught vector. 

Now, if we have this particular form we are trying to derive remember, we are trying to 

derive the sufficient statistic under the condition that mu is equal to mu naught is known 

to us and sigma is unknown. So, we will once again have to use the Neyman Fisher 

factorization theorem. So, let us write these terms as it is and then we will write this 

exponent term as now, note that this particular term is scalar quantity and hence we can 

write trace of that particular quantity. So, it is half trace of summation i equal to 1 to n x i 

minus mu naught transpose sigma inverse x i minus mu naught. So, once again we will 

use this trace of a plus b is trace a plus trace b and trace of a b equal to trace of b a. So, 

using the two trace results, what we can have is this quantity exponent.  



So, we will take first the trace inside and then we will consider this to be one term this to 

be one term and along with sigma inverse this to be the second term and then flip these 

two terms are trace of a b will be equal to trace of b a. That this… thus will reduce to 

half trace of sigma inverse times summation i equal to 1 to n x i minus mu naught into x i 

minus mu naught this transpose. So, we have taken this trace sigma inverse outside. So, 

this once again we will write it as a function say f 2 x 1 x 2 x n now,  our objective is to 

use the Neyman Fisher factorization theorem and this the unknown quantity is sigma 

now, so we will have to write it in terms of sigma and some statistic here. Let us write 

this as some t we will have to define what it t where the first function f 2 x 1 x 2 x n.  

Now, would be a function of x 1 x 2 x n and only known quantities what is that, if we 

look at this term only this is the term which satisfies that particular criterion. So, this is 2 

pi to the power minus n p by 2 and this g sigma t is basically determinant of sigma to the 

power minus n by 2 and e to the power minus half trace of sigma inverse I denote this 

entire quantity what we have here as this t matrix. Now, that t matrix is a function of x 1 

x 2 x n. So, this is t of x 1 x 2 x n only, because mu naught is known to us. So, that is a 

known quantity. 
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And this t x 1 x 2 x n is nothing but this particular matrix which is summation i equal to 

1 to n x i vector minus, this mu naught vector that multiplied by this x i vector minus mu 

naught vector its transpose. So, see what we have obtained, we have obtained the 

following that this second factor is a function of the parameter matrix sigma, sigma is 

appearing here,  and so it is present here and the term and the quantity which is… which 



we have denoted by t x 1 x 2 x n it depends on x 1 x 2 x n through this particular matrix. 

So, that would imply by Neyman Fisher factorization, once again by Neyman Fisher 

factorization this T X 1 X 2 X n which is summation i equal to 1 to n x i minus mu 

naught x i minus mu naught transpose is sufficient for the unknown parameter matrix 

which is sigma matrix. 

So, this is all the three possible cases when we talk about sufficient see that is going to be 

derived on the basis of the random sample x 1 x 2 x n. The first case we had seen that 

that is the most general case, that is the most practical case actually that both the mean 

vector mu and the covariance matrix sigma are unknown to us and in such a situation x 

bar vector and the sample variance covariance matrix s is jointly sufficient for mu and 

sigma in the second case we had assumed that sigma is known to us mu is unknown. So, 

if that is the situation then the x bar vector is going to be sufficient for the unknown 

mean vector mu and in the third case we had the mean vector mu to be known to us say 

equal to mu naught and in such a situation this matrix T what we have this statistic 

actually is sufficient for the sigma matrix. That is all about this sufficiency possibilities 

when we are considering a multivariate normal distribution. Now,  second point of 

interest that one usually is interested in is what is this unbiased estimator corresponding 

to this unknown quantities. So, let us answer these question unbiased estimators. 

Now, we have this mu and sigma are both unknown. So, if both this mean vector mu and 

the covariance matrix sigma are unknown. So, this is corresponding to the case 1, what 

we had considered for sufficient statistic. In such a situation we have already derived for 

a general case of a multi random sampling for the multivariate distribution not 

necessarily a multivariate normal distribution that, if we have this X bar vector is a 

sample mean the random vector. So, that is this i equal to 1 to n from here, we have seen 

earlier that expectation of this X bar vector is the population vector mu. So, this would 

imply that X bar vector is an unbiased estimator of the population mean vector which is 

mu. Now, what about the sigma matrix, we have once again in the earlier lectures I had 

proved that if we consider S to be equal to 1 upon n minus 1 1 upon n minus 1 

summation i equal to 1 to n X i minus X bar into X i minus X bar transpose.  

So, this is the sample variance covariance matrix with a divisor n minus 1, then we have 

already proved this result that expectation of this S matrix is nothing but this sigma 

matrix that is for a general case that we had proved not necessarily for a multivariate 

normal distribution the result still holds true, if we have the underline distribution to be a 



multivariate normal distribution. This would imply that S is an unbiased estimator of the 

covariance matrix which is sigma. So, S is going to be an unbiased estimator of sigma 

and X bar is going to be an unbiased estimator for mu. So, we will have the two,  if on 

the other hand we consider S the sample variance covariance matrix with a divisor n, 

then that is definitely not going to remain an unbiased estimator. So, that is going to be a 

biased estimator for the small sample however, for the large sample it is going to be 

unbiased in the limit. So, this X bar is an unbiased estimator of the unknown mean vector 

mu and S with a divisor n minus 1 is an unbiased estimator of sigma on the other hand, if 

we have defined S n to be 1 upon n of the same quantity as, what we had considered with 

this X i, this is what i just refer to that this quantity is biased estimator.  
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However, this S n is unbiased in the limit. So, these are the two unbiased estimator for 

more general case that mu and sigma are unknown. The unbiased estimators in the other 

two situations were say sigma matrix is known to us or mu vector is known to us can 

similarly be derived. Now, let us move on to another important estimation procedure 

which is the maximum likelihood estimator. So, we will be deriving a corresponding to 

this unknown quantities mu and sigma, we take the most general case, where mu and 

sigma are unknown. The other cases of mu being known or sigma being known can be 

tackled in a similar way. So, suppose mu and sigma are unknown, we have still this X 1 

X 2 X n random sample from that population N p mu sigma, then we will look at the 

likelihood function. 



So, the Likelihood function is L mu sigma given the observations x 1 x 2 x n and that is 

nothing but the joint pdf actually looked upon as a function of mu and sigma given x 1 x 

2 x n and in order to find out the maximum likelihood estimators, we will try to see what 

mu and sigma basically maximizes this particular likelihood function. So, as we had seen 

earlier the joint  pdf which we are now taking as the Likelihood function that is given by 

the following  2 pi to the power minus n by 2 determinant of sigma to the power minus n 

by 2 and e to the power minus n minus 1 by 2 trace of sigma inverse s matrix this minus 

n by 2 x bar minus mu vector transpose sigma inverse x bar minus this mu vector. So, 

this is now, the Likelihood function of mu and sigma given x 1 x 2 x n. Now, we note the 

following that for a fixed sigma positive definite, we will have the quantity which is 

here, now we are at the first step fixed this sigma to any particular matrix any positive 

definite matrix and then we will try to see what is the value of mu which would 

maximize this particular likelihood with respect to that particular new vector. Now, 

sigma is positive definite, I will just extend at this particular bracket little bit sigma is 

positive definite sigma inverse is also positive definite. 

So, for that fixed sigma positive definite matrix sigma inverse is also positive definite. 

So, what will be having is for that fixed sigma x bar minus mu transpose sigma inverse x 

bar minus mu, this would be greater than or equal to 0  why, because sigma inverse is 

positive definite actually that would be greater than 0 , if we look at that. So, this is 

greater than equal to 0 , an 0  if x bar is equal to mu only, because sigma is positive 

definite. So, this sigma inverse being positive definite will imply that this quadratic form 

will be equal to 0  only, if we have x bar to be equal to mu that is this vector that we have 

taken here is just a null vector. So, this would be 0  if we have x bar to be equal to 0 . 

Now, let me give an equation number star here star 1 say, now for this fixed sigma if we 

have this quantity, we can say that thus for a fixed sigma positive definite star 1 is 

maximum with respect to this mean vector mu if we have, now note that in this 

likelihood function here, mu is present only in the exponent. So, if we are trying to 

maximize the likelihood function star 1 with respect to mu for a fixed value of the sigma 

matrix, then this is going to be the slightly hood function is going to be maximized, if the 

exponent is maximized. Now, in the exponent also you will see that this is a quantity 

which does not dependent on mu and hence if we are trying to maximize the exponent 

with respect to mu, then it is maximization corresponding to this particular path of the 

exponent. So, this for a fixed sigma star 1 is maximum with respect to mu, if e to the 



power minus n by 1 x bar minus mu transpose sigma inverse x bar minus mu is 

maximum. So, we will be looking at, what is the value of that mu which would maximize 

this  particular quantity. Now, thus if we look at this exponent here, this exponent is 

going to be maximized, if this part what is sitting in the negative part of this exponent is 

minimized. 

That is ; if this x bar minus mu transpose sigma inverse x bar minus mu is this is… if that 

is minimum if this part is. So, we are trying to find out what is that value of mu which 

would maximize this particular quantity and that is equivalent to finding what is that 

value of mu which actually would minimize this particular quantity, because it has got 

negative sign out here and what is the value of mu that would minimize this particular 

quantity. We have seen that for a fixed sigma this quantity is greater than or equal to 0 . 

So, this quantity here is going to be minimize, if we choose mu to be x bar. So, x bar 

vector is the one that is going to minimize this particular quantity and hence that is what 

is going to maximize this exponent part here, and that would maximize the likelihood.  
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So, that what we can thus say is that, this would imply that this mu hat equal to x bar 

would maximize this star 1 likelihood with respect to this mean vector mu for a fixed 

sigma matrix. However, we see that this maximizing value of mu does not depend on the 

particular level of sigma, where we have fixed and hence this mu hat equal to x bar is 

going to maximize the likelihood with respect to mu for every possible values of sigma. 

So, that this would imply that the maximum likelihood estimator of mu is mu hat M L E 

is equal to the sample mean vector X bar which is also incidentally the unbiased 



estimator. So, we have got this to be the maximum likelihood estimator of the mean 

vector mu. Let us now, try to see what is the maximum likelihood estimator of sigma in 

order to derive that let us now, look at the likelihood function at mu equal to x bar. 

 So, the likelihood function at mu equal to x bar is… let us denote that by this as mu hat 

sigma x 1 x 2 x n. So, that it is equal to 2 pi to the power minus n p by 2 determinant of 

sigma to the power minus n by 2 and then we have in the exponent. Now, what would 

that look like, let us look at the likelihood function. So, this is the likelihood function star 

1, where we are looking at the likelihood function at the maximum likelihood point mu 

hat equal to x bar. So, here this x bar and mu hat, what we will be having will get 

cancelled out. So, mu will be replaced by mu hat and that is equal to x bar. So, this 

would be a null vector.  

So, there will not be any contribution coming from here. So, we will have the exponent 

to be given by minus n minus 1 by 2 trace of sigma inverse s. Now,  let us write this term 

as 2 pi to the power minus n by 2 for convenience, we write it in the mu notation as 

minus half trace of sigma inverse a matrix A say what is that matrix A, where  this A is 

equal to n minus 1 times this s matrix. So, that is nothing but that particular product i 

equal to 1 to n x i minus x bar into x transpose. So, this is now, the form of the likelihood 

which we denote by say star 2 this is the star 2 from of the likelihood at mu equal to x 

bar the maximize likelihood point. 

Now, maximization of star 2 is equivalent to maximization of log of this likelihood 

maximization of star 2 is equivalent to maximization of log of star 2 natural logarithm 

that is of minus n p by 2 log of 2 pi then we take sigma inverse. So, we will take this as 

positive sign n by 2 log of determinant of sigma inverse. So, we what we have done is, 

we have kept this sigma inverse and taken the positive sign n by 2 and taken the log of 

that. So, it is plus n by 2 log of determinant of sigma inverse, this minus half trace of 

sigma inverse A. Now, note that this particular quantity is constant and hence there is 

nothing to maximize here. So, that is of n by 2 log determinant of sigma inverse minus 

half trace of this sigma inverse A. 
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Now, we will do A bit of adjustment here that is of n by 2 log determinant of sigma 

inverse A. So, what we have done is, we have introduced an A in order to have a similar 

expression as to that, what we have here on the trace. So, A is a matrix which does not 

dependent on sigma  that is not going to matter much. So, this is the second term which 

is minus half trace of sigma inverse A. So, this is minus half trace of sigma inverse A 

then we have actually taken this A matrix here. So, we will have to make adjustment for 

that. So, determinant of this matrix will be determinant of this plus determinant of this 

into determinant of A.  

So, that we will require a term which is n by 2 minus log of determinant of A in order to 

adjust that particular term. Now, once again see that this particular term is independent 

of sigma and if we are interested in finding the sigma which would maximize the 

likelihood star 2 that is not going to depend on this particular function, because this is 

independent of sigma. So, that is of n by 2 log determinant of sigma inverse A minus half 

trace of sigma inverse A. So, in order to find out thus the maximum likelihood estimator 

of sigma, we can maximize this particular quantity, what we have here with respect to 

sigma and that would lead us to maximum likelihood estimator. Now,  let us denote by 

lamda j let lambda j denote the eigenvalues of this matrix sigma inverse A of this sigma 

inverse a now, this j of course,  what is the dimension of this sigma inverse A sigma was 

coming from the p-dimensional multivariate normal distribution. So, that is p by p and A 

is a constant multiplier of the sample variance covariance matrix that is also a p by p 

matrix and hence the order is p by p sigma is positive definite and they probably t 1 A 



will also be positive definite and hence this matrix entirely is positive definite and thus 

this j is from 1 to upto p. 

So, suppose lamda j denote the eigenvalue of sigma inverse A you may also note the 

following that, this since lamda js are the eigenvalues of the sigma inverse A lamda j is 

also the eigen value of A half sigma inverse A half matrix that is easy to see, because if 

you look at the eigen value equation then this would lead us to this. Now, we will replace 

this let us denote this by star 3. So, this is that equation now, if lamda js are the eigen 

values j equal to 1 to p of this sigma inverse A matrix then this star 3 is equal to n by 2 

log of now, determinant of this particular matrix would be product of the respective 

eigenvalues. So, it is product this is for j equal to 1 to upto p this minus half. Now, trace 

of sigma inverse A would be just sum of these eigenvalues. So, this is lamda j. So, this is 

equal to n by 2 now, log of this product is summation of this log of lamda j terms this 

minus half summation lamda j. 

So, this we can write this these summations are j equal to 1 upto p. So, this is equal to 

half summation j equal to 1 to p n times log lamda j this minus. So, we have taken this 

half outside there. So, what remains is this lamda j. So, in order to maximize the 

likelihood, we can maximize this particular quantity with respect to what now with 

respect to these lamda j quantities and what is that lamda j with should maximize this 

likelihood, if each of these lamda js are equal to n. So, this is… So, star 4 is maximized if 

lamda j is equal to n, for all j equal to 1 to upto p. So, that is basically the lamda j, now 

lamda j actually is a the crucial term lamda j is what is now, being involve which is being 

associated with this unknown, covariance matrix sigma and that lamda j being equal to 9, 

that is lamda j being equal to n for j equal to 1 to p is what is going to give us lead us to 

rather than maximum likelihood estimator. 
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This would imply, if all lamda js are equal to 1 or lamda j is equal to n, then this would 

imply that this A half sigma inverse A half that is equal to P and say, what these terms 

are d lamda n times I p P prime, where P is now holding the auto normalized eigen 

vectors corresponding to this particular matrix. So, this is what the factorization, what we 

have now these are orthogonal matrices. So, what we have that is n times I p. Now, using 

this particular result, it is simple to get to the maximum likelihood estimators. So, we 

have this particular expression, if the eigen values the maximizing eigen values are all n 

then this A half sigma inverse A half which we had actually seen here that lamda js are 

also eigen values of this A half sigma inverse A half matrix and hence this in terms of its 

spectral decomposition, we will have this P D lamda which is this matrix, now P prime 

and that is equal to n times I p that is sigma inverse is going to be equal to… Now this is 

A half A half. So, pre and post multiplying by A minus half, what will be having here is 

A inverse term here. 

And thus this would imply that this sigma is going to be 1 upon n A matrix would 

maximize the likelihood function with respect to this sigma matrix and what is that. So, 

this would imply further that this sigma hat maximum likelihood estimator is going to be 

1 upon n A, and if you remember what A is that cross product matrix. So, that is X i 

minus X bar X i minus this X bar transpose i equal to 1 to n. So, this thus is the 

maximum likelihood estimator which in our previous notation is nothing but this S n. So, 

it is a sample variance covariance matrix with a divisor n is… thus the maximum 

likelihood estimator. So, thus we have proved the following that X bar vector is the 



maximum likelihood estimator of this mu vector and S n this matrix with the sample 

variance covariance matrix with a divisor n is the maximum likelihood estimator of the 

sigma matrix. 

So, these two thus X bar vector and S n are the two maximum likelihood estimators. 

Now, this also reminds us about the invariant normal maximum likelihood estimator, 

where X bar was also the maximum likelihood estimator and the sample variance with a 

divisor n was the maximum likelihood estimator of the sigma square quantity 

corresponding to any invariant normal distribution. It is just to be noted that this X bar 

as, we had in a seen earlier is an unbiased estimator of mu on the other hand, S n is not 

an unbiased estimator of the sigma variance covariance matrix. However, it is going to 

be unbiased in the limit. In the next lecture we will try to derive the distributions of these 

maximum likelihood estimators X bar S n or S n minus 1. 


