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In the last lecture, what we will looking at we will looking at this complete linkage 

algorithm implementation for a data set, which a distance matrix given by the following. 

So, previously previous to this complete linkage clustering algorithm, we had looked at 

the single linkage clustering algorithm, and we had starting from a distance matrix. We 

had constructed this single, using the single linkage clustering algorithm; the dendrogram 

clustering tree and its interpretations were discussed. 

 And we have started this complete linkage algorithm implementation with a distance 

matrix, which is which was the same distance matrix as what we had use for the simple 

single linkage algorithm. When come up to this state number 2, wherein at the first step 

we had seen that, the cases 3 and 5 were merged at a diffusion level of 2. And then, we 

were require to do the updation of the distance matrix, which we had done in the last 

lecture, and had come up with this modified or rather the updated distance matrix. 



Now, we start from this particular point, now if you look at this distance matrix now, we 

will have to look at which two clusters can now be merged. In order to do that, we will 

be looking at which of these this mutual distance that is given in the updated distance 

matrix is the minimum possible. So, as we see here that this 5 is the minimum among all 

this off diagonal entries, and hence we will be merging case number 2 with case number 

4 and form a new cluster with these 2 cases. 
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So, we move on to that particular step here. Step 3 is to merge 2 and 4 at this fusion level 

5, if you remember correctly that is at a distance level of 5. So, we will be keeping this 

particular information, similar to the previous information that we had kept that. We are 

forming this new cluster previously it was 3 5, now its 2 4. So, this 2 4 forms a new 

cluster at a fusion level of 5. So, that is information that we need to retain and carry 

forward, because we will be using this information. This is that second bit of 

information, which will be requiring in order to form the dendrogram tree. 



(Refer Slide Time: 02:57) 

 

Now, once we look at this particular this distance matrix now, neither 2 is a separate 

identity nor is 4 a separate identity and hence, the rows and the columns corresponding 

to this would vanish. So, we will not be having any entry corresponding to this 2, this 4.  

Similarly, corresponding to this 2 row here and the column 4 here will not be present 

there. What will be present there is the number of clusters. Now are 3 in a numbers. 

What are the clusters? The clusters now are 3 5 2 4 and 1.  
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So, we will require distance matrix updation. So, that is the next step of this 

implementation of the complete linkage algorithm. This is the distance matrix updation. 

Now, the new distance matrix is going to be 3 by 3 as we have discussed. So, that will be 

having this now has the clusters. Now, 3 5 was an existing clusters in the previous step. 

Now, we have formed a new cluster which is having cases 2 and 4 and there is one more 

case, which is 1 which is already in the existing list of clusters. So, we will have this 3 by 

3 matrix filled up. Now, this is corresponding to that 3, 5 cluster. 

This column is representing from this cluster here; the second columns is from 2, 4 

cluster and third column is from this 1 cluster. Now, note that there are some entries 

from the previous distance matrix here. Because the distance between 1 and 3 5, which is 

11 will be an entry here; which will be carried forward from the previous table previous 

distance matrix itself. However, when we are trying to look at the distance between 1 and 

2, 4 or 2, 4, and 3, which would come out here this is to be calculated. So, for the 

distance matrix updation, the distance between the cluster 3 5 and the cluster 2 4 needs to 

be computed; remember, we are looking at a complete linkage distance. 

And hence, the distance between cluster 3 5, when cluster 2, 4 would be given through 

that maximum of that mutual distances; that is what would lead us to a complete linkage 

among this. So, the distance between 2 and cluster 3 5 and the distance between 4 and 3 

5 would now be computed. What are these two distances? From the previous table, we 

will be getting this d 2 3 5 d 2 3 5 is 10. So, this is going to be maximum of that 10 entry 

and distance between 4 and 3 5 similarly, distance between 4 and 3 5 is 9. So, what we 

will be having is maximum of these two that is 10 to represent. Now, the distance 

between these two clusters which is 3 5 and 2 4. 

 Now, similarly one can, one have to obtain actually the distance between 1 and cluster 2 

4 1 and 2 4. So, for that we will be requiring the maximum, because we are on complete 

linkage platform. We will be requiring the distance between 1 and 2 and the distance 

between 1 and 4, which can be looked at from the previous table itself and which is equal 

to 9. One can verify that that it is equal to 9 actually. So, we come up with this as the 

modified or the updated distance matrix at step 4, when we have three clusters in place.  

Now, the next step, once we have an updated distance matrix that is, step number 5 is to  

look at this updated distance matrix and then, find the minimum distance minimum 



distance in updated matrix updated distance matrix updated distance matrix is worth, we 

have as we can see is 9. So, this is 9. This would imply that, we will merge the cases 

accordingly. So, now this 9 is the distance between a single turn cluster 1 and a cluster 

which is having two cases 2 and 4. And hence, we will be merging 1 and 2 4 at a fusion 

level of 9. 1 and 2 4 at fusion level 9.  
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And we would require actually this information to be preserved, because 1 with 2 4 is 

now merged 1 and 2 4 and Merged 1 and 2 4 are Merged at a fusion level of 9 and that is 

the information which we need to keep track of. This is the third information, when we 

are adding the information one after the other. After this 2, we will be having this third 

information which would be information, which would be required actually to form the 

dendogram tree. Now, we come to the next step that is, step number 6. So, at Step 6 we 

will look at updating this distance matrix, previous this distance matrix was 3 by 3, 

because we have three clusters. Now, we have got two clusters now. 

 One cluster is an existing cluster 3 5 and the other cluster is the cluster which is now 

formed, which is having 3 cases 1 2 and 4. And hence, we will be having the distance 

matrix which is just a 2 by 2 matrix. 3 5 is an existing cluster and 1 2 4 is a cluster that is 

newly formed. So, this 2 by 2 matrix will have 0’s in the diagonal. This is the distance 

between this cluster and this cluster. Using a complete linkage (( )) distance philosophy, 

one can similarly find out, what is the distance between these two clusters. It turns out 



that, this particular distance is equal to 11. So, this would imply that, the last fusion is 

merging the cluster 3 5 and the cluster 1 2 4, at fusion level 11. 

So, the last information that is, what we will be having is the following that, this 3 5 

cluster merges with a cluster 1 2 4 to form a single 5 unit cluster at a fusion level or a 

merger level of 11. So, this is the 4th information that will be keeping. So, we have all 

the 4 information. This is the first fusion level; this is the second fusion level; this is the 

third fusion level and this is the forth fusion level. Then the last step of this algorithm is 

to drawn the dendogram diagram. Step 7 is the dendogram diagram or the dendogram 

tree formation to give the hierarchical clusters. to give this hierarchical clusters 
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Let us do that on the next slide here. So, what will be having similar to the single linkage 

distance here, the maximum merger level is 11. This is the merger distance or the 

threshold distance that is on the y axis and we will have this 1 2 3 4 5; say, this is fusion 

level 5; 6 7 8 9 10 11. So, this is the 10 level here now. What is the information that will 

be putting here? First we will put in the information that 3 and 5 have fussed at level 2. 3 

and 5. So, there are cases which is 3 here, this is 5 here; they have merged at fusion level 

of just equal to 2. So, they are the nearest among all the pairs of objects. So, that is the 

first information. 

 So, this we have taken care of this one, will next look at the second information, then 2 

and 4 have merged at a level 5. Let us see so, its 2 and 4 had been merged at a level 5. 



So, this is that level 2 merger; this is that level 5 merger; case number 2 and case number 

4 are merged to form a new cluster. So, we have taken care of this one. Now, what we 

are next going to have is input number 3. 1 2 and 4 merged at level number 9. So, the 

case 1 comes in here. So, there is a singles seek here, which is coming up to this level of 

9; that is a merger level 9. And then, this two cases 2 and 4 and 1 now come together to 

form a new cluster, that is what this input had given. So, we have taken care of this 2. So, 

the last thing that we need to do is that, all the cases now merged at level number 5 4. 

So, we have this one cluster, which is having these three cases 1 2 and 4; we were 

another cluster 3 and 5. And then, they come together, these two clusters come together 

at fusion level distance of 11 and that is the dendogram tree. So, we will have this as the 

dendogram tree, wherein the clusters are in hierarchical form. They with this we have 

formed from that distance matrix D by implementation of a complete linkage algorithm. 

Now, an important point to be noted in this type of hierarchical cluster analysis is that, 

where to how to decide on the view point of looking at the clusters being formed.  

So, when we are looking at deciding the view point in dendogram tree now, if you look 

at this particular point, the deciding the view a view point actually. Let me correct it 

view point or the reference point actually; from which we are looking at. Whether to 

look at the dendogram because if we look at this level 11, we have all the five cases in 

one cluster, if we look at this 9 level here. We will have then two clusters. One having 2 

5 3 5 and the other having 1 2 4 which distance is desirable. There are various ways 

actually at looking at this deciding upon the view point, is simple approach is to looking 

the following diagram which looks at the following on x axis, we have the number of 

clusters. 

So, this this basically is to decide the number of clusters and on y axis here, we will have 

this as the fusion levels or the merger levels. Now, for this particular dendogram, if we 

look at suppose this is say, I divided here; at 5 here; this is 10; this is say 11. There is a 

number of clusters is 1 2 3 4 5. So, there are 5 cases. So, at the most we will have five 

clusters. Now, if you look at fusion level number 11 fusion level of 11 out here, then we 

will have one cluster here. Now, if you look at a fusion level of 9. So this is say fusion 

level 9 if you look at fusion level 9 we will have two clusters. So, we have the second 

point here 9. 



If you look at a fusion level of 5, which is this one; we will have 3 clusters in the data. If 

we look at a fusion level which is 2 here… So, if this is 5, then let say this is 4 3 2 1 say. 

So, the fusion level of 2 we will have this as 4 clusters and then, this graph is up to this 

particular point. Because number of clusters 5, that would be at the 0 level of fusion. So, 

we have a graph like this and it is basically from such a graph look for the flattening 

actually of the graph. The point at which, the graph flattens the point at which the graph 

flattens is the desired view point. 

So, we will say that, from this point onwards well this is very small data set and hence, 

the flattening of this particular graph is not observed here. If you have huge number of 

cases, then what it will turn out is that, we will have such a graph with many numbers of 

clusters. We will find that, if we have for example, a graph of this following nature that it 

is of this nature then, this is the point which we associate with the flattening point. So, 

this is what we associate as the flattening point. And there will be a number of cluster 

say g for this particular point here. This g usually taken as the view point for looking at 

the number of hierarchical clusters that, are formed from this particular data set. 
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Now, we move on to the other type of clustering algorithm, which is non-hierarchical 

clustering. non-hierarchical clustering. We will discuss one important in non-hierarchical 

clustering method, which is called the k means clustering or the method of iterative we 

location method. So, what are the features of such a non-hierarchical clustering method? 



So, the features the salient features would be that, the clusters are naught clusters formed 

do not have any hierarchy. Do not have any clusters correct this 1 clusters formed do not 

have any hierarchy. Number 2, there is no distance matrix calculations as contrast to the 

previous hierarchical clustering method. No distance matrix calculation, we start with the 

no data and end up with row data only. No distance matrix calculations. 

Now, it is said that, it is better suited for a higher or large data set better suited for a large 

data sets why is that so, because if you look at the output an hierarchical clustering. If 

you have a huge data set actually then, the number of cases may run into hundreds and 

thousands. And in a such situation, we will have also such merges a cases, this x axis 

will be so crowded with all those cases for a high dimension for a large data set. Then, it 

will be very difficult actually, to make out which clusters are formed at which particular 

level. Hence, the output will be so cumbersome for a hierarchical cluster analysis output.   

It is better suited we have a non-hierarchical clustering and we do not talk about any 

hierarchy in the formation of the clusters. Now, how what is the type of algorithm or 

what is type of behavior of such non-hierarchical clustering method? Non-hierarchical 

clustering method starts either clustering methods starts from either number 1, an initial 

partition initial random partition actually initial partition of items or objects into groups 

or its start with an initial set off starts either with and initial partition of items into groups 

or with and initial set of seed points. I will talk about explain what I mean seed points. 

Now, these seed points will actually act as will form the nuclei of initial clusters. 

So, what are we trying to do here? We are trying to do in the non-hierarchical clustering 

is the following that, if we have n cases with us, we are basically trying to put this n 

cases into k number of means. k number of means in the sense that, k number of clusters. 

So, each of these k means are identification levels for each of this clusters. And then, 

naturally there is not going to be any hierarchy between these means; all of these means 

are different. So, we will have such k clusters in the data, as the final output of this 

particular system. They do not have any hierarchical structure in the formation of the 

clusters.  

There will be no distance matrix calculation as we will see and this better suited we have 

already discussed. This non-hierarchical clustering method, how do they start? Well 

When we have a hierarchical clustering method, we start with what? We start with a 



distance matrix. When we have a non-hierarchical clustering method, it starts basically 

with either an initial partition of items into groups. So, if we see that, there are k clusters 

in the data, we will start with an initial random which was on k clusters; which are 

basically the partition of the data set either with that or we start with k seed points, k 

multidimensional points randomly chosen.  

It may be chosen from among the existing data or may be just k dimensional p 

dimensional k such seed points, which now act as the centroid or the nuclei of the initial 

cluster. So, these are the two ways in which a non-hierarchical clustering method 

actually starts. I will just put it as a note that, when I have said that, I start with either this 

or with this second initial set of seed points. How one can actually do that? One way to 

start is to randomly select seed points from among the data itself, from among the items, 

because each of these items are the p dimensional p dimensional in nature. 

When we talk about seed points, which are going to form as the nuclei of the initial 

clusters, which are going to change iteratively. Those points also need to be of the same 

dimension as that of the data. And thus choosing initials set of seed points say k in 

number would be to look at randomly choosing k points, from among the n possible 

items. Now, this is one way, which would take care of this particular approach or what 

we can do is to randomly partition the data to randomly partition the data. 
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So, it is random partition of the data that is items or objects into initial groups. That is 

how one usually implements these two different types of approaches. We will look at one 

example. In the example, what we will do is we will approach the first; we will adopt the 

first approach that, we will have initial partition of items into groups. And then, we will 

see how this method of k means clustering is going to evolve? Now, I said that, the k 

means clustering, k means method or the method of iterative relocation or the method of 

iterative relocation is an important clustering approach, which actually leads us to non-

hierarchical clusters that can be formed from the data. 

Now, k means method, I will just explain what; how this particular method actually goes 

about? k means method is an algorithm k means a method is an algorithm that assigns 

each object that assign’s each object to the cluster having the nearest nuclei or centroid. 

So, we will be having all such possible clusters. And then, this k means method actually 

will assign a particular object to a cluster, if that clusters centroid is nearest to that 

particular object. When that object is being compared with the centroids of all the 

possible clusters into which, the object can actually go to. 

Now, what is the algorithm for this k means method? The algorithm goes in the 

following steps. So, the first step is to partition the data, partition the items into k initial 

clusters. This is one approach, we could have also put k centroid into that particular 

initial data and then, make the assignment accordingly. Now, first we partition all the 

possible n items in to k initial groups. And once that is being done then, we reassign will 

look at possible reassignment; reassign items to the clusters whose centroid is nearest in 

Euclidean sense. Then, once we have done that, we would recalculate the centroid for the 

clusters receiving the new item receiving the new item and for the cluster which is losing 

that item receiving the new item and for the cluster losing the item of the case. 

So, what we are doing? We are looking at k initial clusters and then, we are looking at 

whether a particular object is closest to its own cluster. That is, in the initial cluster, 

whether it is nearest to that or which center to which centroid of the initial clusters k 

initial clusters that item is closest 2. And if that if we find that, a particular item is closer 

to another cluster than to the initial assigned cluster will make a reassignment. Once a 

reassignment is made, we will have to recalculate the centroid; the k centroid for two 

specific clusters. One cluster which is receiving the new item and the cluster which is 

losing that particular item.  
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And then, we will continue this particular method of assignment reassignments, until we 

find that no reassignment is possible. So, we will look at repeat step 2, until no more 

reassignment is possible. So, it is basically in these three simple steps, we will look at a 

simple data and then, try to see how this k means algorithm method actually goes about? 

Now, I just put it as note, what I said that rather than starting the process of this k means 

algorithm with a partition; a random partition of the data; random partition of all items 

into k initial groups. That is what, we have written in the algorithm as in step 1 of the 

algorithm. 

We can also assign seed points. We can specify k initial centroids straight away, which 

are going to act as this seed points and then, proceed to step 2 of the previous algorithm 

Step Step 2 after a walk through the data through the data right. Why do you do that? 

Because once we have specified k such initial seed points, these may be k randomly 

chosen multidimensional items only. Then, we need to actually look at we have to look 

at all the data and then, we will have to look at these initial centroids. How do these 

centroids behave as far as the data is concerned?  

Because when if a particular cases nearest to particular chosen or rather randomly 

initialized seed point, we will have that point to be associated with that centroid. We will 

have a cluster around that particular seed point, wherein the case which is closest to that 

particular centroid or the randomly chosen seed points is belonging to. And then, we 



walk through the data, go to step 2. And then, look at possible reassignments in the data 

that can be possible and then, the algorithm goes through. 
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Now, let us look at a numerical example to illustrate, how this k means clustering 

algorithm actually behaves. So, this is an example we have the following that we have 

items to make lives simple, we just take four cases A, B, C, D. So, these are four items of 

four cases in the data. Let us assume that these are each of these cases are having two 

dimensions, so these are all two dimensional data. So, that the first case is characterized 

by this vector 5, 3. The second is characterized by this vector minus 1 plus 1, and then 

the third case is characterized by 1 minus 2. The third case fourth case or case D is 

characterized by minus 3 minus 2. So, this is the data what we have to start with, and we 

will look at starting with this data how to get to a k means cluster. 

Now, let that k be equal to 2 for this given illustration. So, we are trying to divide these 

four cases into two clusters using a k means clustering approach, which is going to lead 

us to clusters which are non-hierarchical in nature. Since we have this k equal to 2 at the 

first step of implementation of this k means clustering algorithm, let us look at an 

arbitrary partition of the data. So, we need to have two elements in the partition arbitrary 

partition say, we take one partition to be A, B and the other partition to be C, D. So, we 

randomly put A and B one cluster, C and D the second cluster. So, this corresponds to 

the first cluster; this corresponds to this second cluster. 



Now, we will have to first look at, if these are two randomly formed clusters then, what 

are the centroids of these? And then look at possible reassignment 2; some other cluster 

different from the initial random cluster. So, we will have to look at these cluster 

centroids in this particular data. So, we will have this as two possible clusters and these 

are cluster centroids. This is the cluster A, B; this is the cluster C, D. Now, if you look at 

the cluster centroid it is nothing but, x 1 bar actually you can say and this is x 2 bar. So, 

where x 1 bar is the mean of the first component of the two elements, which are 

belonging to the first cluster that is A and B. 

So, this cluster centroid, which is the cluster A B would be having the coordinates as the 

mean of this 2, as the first coordinate and the mean of this 2, as the second coordinate. 

And hence, both of them are to in this particular case. Similarly, for the cluster which is 

having elements C D, we look at what are these quantities? It turns that, this is minus 1 

and this is minus 2. So, this is these are the centroids. Now, we have these two clusters. 

This is the centroid; suppose I say that this is centroid number 1; this is centroid number 

2. So, this is centroid number 1 and this is another random cluster, which is having this 

centroid number 2 as that.  

Now, there are two cases; A and B here and C and D here. So, we will look at whether A 

case is closer to this centroid center or the other cluster centroid center. These two 

clusters may not be so different. So, we might be having the clusters C n 2 as this point. 

So, there are cases C and D setting here. So, we will find out the distance between A and 

this cluster center A and this cluster center. And try to see whether A is closer to this 

cluster center than to the other cluster center and then, look at possible reassignment.  
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So, that goes into the second step of this algorithm. So, in this step 2, we will look at that 

assignment. So, the second step we compute the distances as I said that, compute 

distances from cluster centers from cluster centroids and reassigned items if possible or if 

required to the nearest group now. That possibly is going to happen, because we had thus 

the initial set of clusters to the nearest group now. For the given data here, we are 

looking at this to be one centroid and this to be the other centroid. So, what we are going 

to do is to look at the distance of A from its clusters center and distance of A from the 

other cluster center. 

Now, if we find that, the distance of A from its own cluster center, initial randomly 

chosen cluster center is higher than the distance of A from the other cluster center. We 

will reassign A to this cluster. Once we do that, we will stop at that particular point and 

then, recalculate the centroids of the clusters. Because this cluster is now losing A and 

the other cluster is going to gain A. If that is possible, if that is not the case if you find 

that A is closer to its own cluster, own initial cluster than to the other cluster which is 

containing the points C and D. Then, we will not disturb A, keep it in the same cluster as 

what it was present in the initial randomly allocated clustering.  

Then, we will look at the second case and look at whether any reassignment is required 

for that point or not. Then we will continue, at any point if you find that reassignment is 

done, we will stop at that particular point. And then, what we are going to do is to 



recalculate the centroids of the clusters. So, let us look at what we are going to get here. 

Now, if you are looking at the distance square of A from the cluster center; now by 

saying this I am saying that, this is centroid centroid of A B. We will have to look at this. 

We will have to this is for case number A. So, we will look at the distance of A from its 

own cluster; distance of A from the cluster center or the centroid of the cluster, which is 

C D cluster. 

Now, it is easy to see what these quantities are? It turns out that, this is equal to 10. This 

is the (( )) distance square and this distances 61. So, A is closer to its any initial cluster 

than to the other cluster. So, this would imply no reassignment of A is required. Now, 

once that is turn, we move on to case number B and we will calculate the similar thing. 

We will have to look at the distance square of B from its own centroid. We will also have 

to look at this distance square of B from the other cluster centroid, C and D. As it turns 

out that, this is equal to 10 and this is equal to 9. 

So, B is the distance of B from its own cluster center is higher than the distance of B 

from the other cluster which is C and D. So, this would imply that, B the point which 

was initially sitting in the cluster A, B is closer to the other cluster and its own cluster. 

and see And hence, reassignment of B is required. So, we will need to do this, because 

we see that B is closer to the cluster C, D than to the cluster A, B.  
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This would further imply that, reassign B to C D. Now, the setup gets changed as B is 

reassigned to C D. So, the new clusters are, there is one cluster with single turn case A 

and there is another cluster with these three cases B, C and D. Since we have this as the 

two new clusters, we will require updation of what centroids updation of cluster 

centroids, because the previous centroids were that for the randomly allocated terms 

there. So, this is basically going to be the Step 3, because we had at Step 2 that… 

Reassigned I am sorry this is going to be Step 3 this is going to be Step 3 of this 

implementation; updation of the clusters centroids. 

Now, what are the clusters? Now, in the data as we had said that, these are the clusters. 

This is cluster number A and the second cluster is having these three cases and these are 

centroids. It similarly, that x 1 bar corresponding to the cases under this x 1 bars 

corresponding to the cases under the second cluster. And this is going to be that point 

itself, because it is a single turn cluster. This point is the cluster centroid, which is the 

ordinates of A and for this B C D cluster one can calculate that, this is now the new 

cluster means centroid points of this cluster. Now, once we have that, we will have to 

look at possible reassignments. 

Possible reassignments meaning there by, will have to see whether the distance of A 

from itself is always 0. So, A cannot be reassigned here. We will look at, what is the 

distance of B from this is center? And what is the distance of B from this center? We will 

look at the distance of C from this point here and this point here and look at possible 

reassignment. Now, we will have this particular table. The squared distance to group 

clusters. We can have the following table that; we are looking at items which are A B C 

and D. We will have to look at the distance of each of these items from the two cluster 

centers one this and one this. 

So, we have got a cluster as A and another cluster as B, C, D. And we look at what is the 

distance of A from A that would be 0. The distance of A from this particular point here 

can be obtained, which is 52. And similarly, this table can be completed 40, 41, 89 and 

this is 4, 5 and 5. So, this for example, denotes the distance of the items C from A 

clusters centroid and this denotes distance of C from this B, C, D cluster centroid. Now, 

we see that, A anyway cannot be reassigned. We first look at B, the distance of B and the 

cluster center A is 40; this is 4 and hence, B is correctly put into this set.  



So, no reassignment for B is required neither for A. Then, we look at the item number C. 

C is closer to the cluster centroid, which is having the points B, C, D than what it is to A, 

because this is smaller than this. And hence, no reassignment is required for the item C 

and also for D; we find that it is closer to this cluster centroid than to this cluster 

centroid. Hence, no reassignment also for D is required. So, this is this step is going to 

tell us that, no reassignment further is required. If that is the case, then we terminate this 

particular procedure. Then finally, say that these two are the two clusters in the data, 

which are thrown up by the k means clustering. 
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So, this would imply that, this 1 and it is I am sorry it is not 1. It is A and B, C, D. A and 

this B, C, D are the desired clusters. So, we have just two clusters in this particular data. 

Now, the next thing that is, what we are going to look at is some sort of optimality 

criterion in deciding or some sort of approach of comparing different partition or the 

different clusters in the data. So, that is the last thing which we are going to see. After 

that, we will look at some real life data and look at how the clustering for such real life 

data actually behaves? A will be actually looking at many such criterions criterion. 

So, we look at cluster criterion that is, basically for comparing different partition or 

different clustering levels, comparing different partitions of the data. Now, what is the 

basic objective of looking at this type of criterion? The objective is to have the objective 

is to have a criterion for optimum partition of the data for optimum partition of the data 



such that given set of cases which are going to be clustered. The problem reduces to 

partition the data into g clusters. g is a number which has to be derived clusters. So, that 

the clustering criterion is optimized. 

So, that the clustering criterion is optimized, because as we have seen say, in the 

hierarchical clustering approach or in the non-hierarchical clustering approach, we can 

have different cluster, different partitions of the data. If we are looking at a hierarchical 

clustering algorithm, if we look at two different fusion levels or the threshold distances 

then, we have completely different clusters in that particular level. And hence, there has 

to be some way of comparing such clusters, whether we should look at particular say two 

clusters in the data, whether to look at three clusters in the data. What is going to give us 

some sort of optimality with respect to some criterion? That we are going to propose 

shortly. 

(Refer Slide Time: 50:07) 

 

So, that is what, is a basic objective of this particular analysis. Now, let there be n data 

points. Let the n data points, now these are cases be given by say x 1 x 2 and x n. Now, 

given this particular data, the sample variance covariance matrix the sample variance 

covariance matrix is given by this we have seen time and again say sigma hat which is 

say with a divisor n. So, that it is corresponding to the maximum likely hood estimator. 

So, that is i equal to 1 to up to n x i minus say m, where m is the sample mean x i minus 



m transpose, where this m vector is 1 upon n summation i equal to 1 to n x i. So, this 

basically is a sample mean. 

 Now, let us define the number of clusters. Let there be g clusters, we are trying to 

compare or rather have a platform for comparing such possible clusters. Let there be g 

clusters and define this following indicator function. z j i to be equal to 1 and 0 1 if the 

case x i belongs to cluster j and is equal to 0 if it is otherwise. So, if z j i is given by this, 

we can write the following quantities. We can write that, our m vector as following. 
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So, this m vector say I have that say m j vector; this is going to the cluster mean for that j 

th cluster, which is going to be 1 upon n j. n j is the number of points in that particular 

cluster and this is summation i equal to 1 to up to n, the entire data z j i that in to x i; 

wherein we have n j to be equal to summation z j i, this indicate variables for i equal to 1 

to up to n. So, this is the mean of cluster j and what is this? This is the number of items 

in cluster j. This is simple to see that, because if you look at z j i; z j i is equal to 1 if x i 

belongs to the jth cluster. And if we have n j items among this small n to belong to 

cluster number j, exactly n j of them among this z j i is for a particular j would be equal 

to 1. And hence, the sum would be equal to n j only cluster or not. 

So, these two are the two simple quantities. Then, we can define the two following 

quantities. The within-cluster, sum of squares and cross product matrix some of squares 

and cross product matrix is going to be given by say s w, which is equal to 1 upon n. We 



will still use that indicator function, this j is equal to 1 to up to g. So, these are the 

number of clusters and i is equal to 1 to up to n. Then, we have this as z j i the indicator. 

This is x i minus m j; this is the cluster center for the j th cluster x i minus m j transpose.  

So, this is also called the pooled within cluster pooled within cluster scatter matrix 

scatter matrix over the g clusters. Now, if this is the within-cluster, sum of squares. One 

can define also the between-cluster. 

(Refer Slide Time: 55:04) 

 

So, the between-cluster, sum of squares and cross product matrix some of squares and 

the cross product matrix is say S B, which is equal to sigma hat minus this S w which is 

going to be given by simple subtraction. This is going to be given by this n j divided by n 

and then, we will have this as m j minus m into m j minus this m, where m is the grand 

mean. So, what is this going to indicate? This is going to indicate the scatter of the 

cluster means cluster means about the grand mean. This is of the cluster means, because 

we are looking at the deviation of this m j from m, the grand mean grand mean 

corresponding to all the clusters and we are looking at how that is being deviated? 

So, this is what is termed as the between-clusters sum of squares and cross product term 

and the previous is what is called the within-cluster sum of squares and cross product 

matrix. Now, the optimality criterion for clustering are basically based on these two 

measures S W, S B and sigma hat, which we see will see in the next lecture. Thank you  


