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In the last lecture we had started discussing about statistical cluster analysis techniques, 

and we had introduced the various types of clustering techniques, that are usually applied 

hierarchical or non nonhierarchical clustering. And we were discussing the hierarchical 

clustering in more detail. And to do that, we were looking at the type of a distance 

measures that are usually used; because as we had discussed that once we form new 

clusters, we need to find out the distance between the new cluster that is formed at a 

particular step of iteration and the existing clusters. And in order to do that we need to 

have some sort of approach that we had started discussing.  
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The first type of approach that we say it was that of the single linkage, wherein we look 

at the minimum distance between the two clusters. One may be newly formed and other 

one may be an existing cluster. So, we try to find out what is the mutual distance in terms 



of the single linkage and that is basically looking at the nearest neighbors among these 

two clusters. There are other ways of defining this distance between clusters which we 

are going to see first of all today. 
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So, the second one is, what we call as a complete linkage. So, the complete linkage 

distance in contrast to the single linkage, it looks at the maximum distance as the way of 

looking at two different clusters and then, finding out the distance between the two 

clusters. Let us look at the type of things that we were looking at for the single linkage. 

So, suppose these two are two clusters. So, this is cluster number 1 and this is cluster 

number 2. Then, in the previous class we had this 1 and 2 in this cluster 1 and, 3 4 5 in 

this order in cluster number 2. So, it was a 5 here, a 3 here and we have the first case 

here 1 and the second case here 2. So, this was the structure of the 2 clusters; this 

visualized on a two dimension.  

If it is on a higher dimensional than 3, we ofcourse cannot visualize such clusters. But 

basically, what we are trying to see is that among the mutual distances between any case 

that is belonging to cluster number 1 and any case that is belonging to cluster number 2. 

So, the distances will be d 13 that is the distance from case number 1 to case number 3, 

which is belonging to the second cluster; distance between 1 and 4 and distance between 

1 and 5. So, these are the distance starting from this one node which is sitting here. 

Similarly, from the second case node number 2, they will have the distances as d 23, d 24 



and d 25.These are the 6 possible distances, which are when we are looking at one case 

from cluster number 1 and the second case from cluster number 2.  

So, these are the distances. Now, when we look at complete linkage in contrast, in the 

single linkage we had looked at this d 25 which is the nearest neighbor; this is the 

farthest neighbors that we are looking at. So, what will be having for the farthest 

neighbors are these 2 points. The distance between 1 and 4, 1 belonging to cluster 

number 1 and 4 belonging to cluster number 4 cluster number 2 appears to be the 

maximum. In any case, if any other distance is maximum that would be the complete 

linkage distance. So, here once we have that interpretation, this complete linkage 

distance complete linkage distance between cluster 1 and cluster 2 would thus be given 

by d 14.  

So, that now gives us the distances between these two clusters. When we have higher 

dimensions, we compute all such possible distances between the multidimensional points 

belonging to 1 cluster and the multidimensional points belonging to the other cluster and 

then, find out which of them is maximum. And then the maximum distance is used in 

order to measure the distance between the 2 stated clusters, cluster 1 and cluster 2; that is 

simple. In case we have k 1 cases belonging to cluster 1 and k 2 cases belonging to 

cluster 2, we find out all such possible distances and then look at what is which distance 

is maximum. And hence then use that, in order to give the complete linkage distance 

between the two clusters.  

Now, there is a third type of distance measure which is called the average linkage which 

is called the average linkage. So, this looks at the average distance average distance in 

what sense. So, we still have these two clusters, cluster 1 and cluster 2; 1 and 2 sitting 

here and we have another cluster here which is having the cases which is 5; then we have 

a case 3 and a case 4 sitting here. Now, we will be looking at the average of the 

distances. The distances are 1 unit belonging to one cluster and the other unit belonging 

to the other cluster. So, we look at all possible such d ijs ; i belonging to cluster number 1 

and j belonging to cluster number 2.  

And then find out the average over all i j ; i belonging to cluster number 1; j belonging to 

cluster number 2. So, what will be having here is that from 1 we have 1 distance here; 

from 1 we have a distance to 5; from 1 we have another distance to 4; from 2 we have a 

distance to 3; from 2 we also have a distance to 5 and we have a distance to 4. So, the 



average linkage would be the average of all these 6 distances that we have come come up 

with. So, the average linkage distance between the two clusters, cluster number 1 here 

and cluster number 2 here is going to be given by…  

There are 6 such distances and thus, this is going to be just the sum of d 13 plus d 14 plus 

d 15 this plus d 23 plus d 24 plus d 25. So, these are all these 6 possible distances 

distances computed, when one object from one cluster is taken to be compared with 

another object in the other cluster and that 1 upon 6. So, in general as I said that, this 

average distance is going to be 1 upon the number of such distances. If this as k 1, if this 

as k 2, then this number would be k 1 times k 2. And then we will have a summation 

double summation over i and j; i belonging to cluster number 1 and j belonging to cluster 

number 2. 
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So, these three are the most widely used used distance measures, in order to compute 

distance between two clusters. There are other types of measures which one is called 

centroid linkage. This basically is looking at the distance between the two centroids of 

the two clusters. So, this is the distance between centroids of the two clusters. So, one 

can compute what are the centroids of the respective clusters and then find out what is a 

distance with respect to whatever distance matrix we are considering between the two 

centroids. Similar to the centroids, where wherein we are looking at the mean of these 

points, central point one can look at median also median linkage. So, this is going to be 



the distance between medians of the two formed clusters. So, this is these are some 

various ways of looking at how to measure distance between two separate clusters. 
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Now, we look at the agglomerative single linkage algorithm in detail. Let me start fresh 

here and then try to understand how these distance measure are going to play a role. 

When we actually form this agglomerative clustering with where wherein we are going 

to end up finally with the dendogram tree tree structure which is going to give us clusters 

in a hierarchical form. So, let us look at this single linkage agglomerative algorithm. 

Now, how is this going to go about this is going to go go about in the following way that 

groups are formed from individual objects by merging the cases which has got the 

shortest distance. 

By merging, I can say which are nearest neighbors the nearest neighbor that is cases 

having cases or objects having shortest distance shortest or minimum distance. So, once 

you have that, we can follow these steps here that given this D matrix which is the 

starting point. Find first the smallest; find first U and V such that this is smallest. I will 

say find first U and V such that d UV is basically the minimum among all d ij minimum 

over all i j here. So, we are looking at the distance matrix. So, we ofcourse have to start 

with a matrix D which is n by n corresponding to the n objects. So, this is the distance 

matrix. 

So, corresponding to all those n cases, we have this D to give us the distance matrix and 

these d ijs are elements of that distance matrix. So, we first find U and V such that d UV 



the distance between u and v is the minimum possible then, we will merge these two. So, 

we will merge a fuse U and V to form the cluster U V. Now, comes the fact that once U 

and V have been merged, we have these two forming one single cluster. And then from 

the remaining n minus 2 cases, we will have n minus 2 clusters and this will make up the 

n minus 1th cluster. Now, we need to find out what is the distance between U V cluster 

and the cluster which we have the original existing n minus 2 clusters.  

Now, we will follow the general agglomerative steps here. So, at step 3 of general 

agglomerative agglomerative hierarchical cluster analysis,  the distance matrix needs to 

be updated. So, the distance matrix updating stage, the distance between between U V, 

this newly formed cluster and any of the other and any other cluster say W that there will 

be n minus 2 of them at this first step. The distance between this and this is computed by 

is going to be computed by the following form that, distance between U V; this is the 

newly formed cluster and W. Note that, we are now using a single linkage. So, we have 

one cluster wherein, there are two cases and the other cluster which is having only single 

case, which is having the identity as W.  

So, what we are going to do, if we are looking at a single linkage agglomerative 

algorithm is the following that we will look at the distance between U and W and V and 

W. And then, find out with which is minimum and that minimum would then be the 

distance between this newly formed cluster U V and the existing cluster which is W. So, 

what will be having is that distance between U V and W to be given by minimum of 

these two quantities; distance between U and W and distance between V and W. Simple. 

So, once we can do that, we can do it for all subsequent iteration. 
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So, one can actually look at that, continue the steps of iteration we had number see here. 

At this d, continue iterations with distance matrix upgradations or rather updations 

updations using a single linkage distance. This is to be continued till we get n clusters; 

that is, we come down to the last level of the finest level of the resolution. In the finest 

level of resolutions, in division cases are going to be members of single clusters. So, a 

case will be sitting actually on one single cluster. Now, just to remind you that this is 

what we are going to have; results are going to be displayed using a dendogram tree 

displayed through Dendogram tree. And that branching type of structure is going to lead 

us to the hierarchical clustering that is what is desired here.  

Now, one can use the similar type of approach, when we have a complete link linkage or 

an average linkage. For the complete linkage, I am not going to write the entire algorithm 

once again. We will just say at what point that is going to differ, it is going to differ this 

complete let me first write it complete linkage agglomerative algorithm. So, how is this 

going to behave? This is going to go along exactly in the same line. Up to this particular 

stage, wherein we require updation of the distance matrix. When we are then trying to 

have updation of the distance matrix, we need to once again find out the distance 

between U V and the cluster W.  

And that is, now going to be given through a complete linkage, if you have a complete 

linkage algorithm agglomerative algorithm. And there, instead of minimum which is 

going to look at the nearest neighbors. In a complete linkage, we are going to look at the 



farthest neighbors and hence, this minimum would get just replaced by maximum. So, 

we will just say that, at this step 3 here; at step 3 of the general agglomerative algorithm 

use a complete linkage distance linkage distance between clusters distance between 

clusters. That is, now this distance between U V, the newly formed cluster and an 

existing cluster W is going to be given by the maximum over the same two distances d 

UW and d VW.  

All other steps are same as the single linkage algorithm. So, it is very simple, you have 

the single linkage agglomerative algorithm in this following ways. You will have that 

complete linkage first, you look at the minimum which two objects are closest by finding 

the minimum over i j of all these d ij entries. Then fuse them, form the clusters and then 

come to the updation stage. And there, the distance between U V from cluster U V and 

existing case W existing case at the first step. Now, in the second stages onwards, this 

also will be clusters. So, we will have that being computed through a complete linkage 

and wherein will be using this maximum here.  
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Now, when we have an average linkage, the steps also are similar. So, average linkage 

agglomerative agglomerative algorithm will follow exactly in the same way. We will 

have at the third step only. These algorithms are going to differ at step 3 of general 

hierarchical cluster analysis algorithm .We use the distance between U V form the 

cluster new cluster and W. As this d UV, this is the first cluster that is formed and w that 

is going to be given by 1 upon… Let me write this fraction bit larger; this is the number 



of cases which are there in u v and the number of cases which may be there in w. At the 

first step, this N W will be equal to 1 and N UV will be equal to 2. But at the subsequent 

steps, when we are looking at the other iterations in order to get to the N clusters, this 

will these will be different. We will see that in data examples.  

Now, this in the numerator, we have summation over i summation over k and the 

distance is given by d ik. Wherein, we have got this following interpretation that, this d 

ik is the distance between object i in cluster U V in cluster U V and object k belonging to 

the cluster which is denoted by W; this is an existing cluster. So, what we are looking at 

is we are looking at all the d ik such that i is belonging to the U V cluster and k is 

belonging to the W cluster. And then, finding out all such distances and then finally, that 

is going to be given by the average linkage. The average linkage would find out the 

average of all such distances. So, this is the total of all such distances and these are the 

number of such distances and hence, we will have this to give us the average of the all 

such distances. This N U V is the number of objects in cluster U V and similarly, this N 

W is the number of objects in the cluster which is given by W. 
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Let us look at the numerical example, in order to see how these things actually work. Let 

us look at this numerical example. We have got this distance matrix to start with. So, the 

row data has been transformed into the following distance matrix which is given by say 

D which is of the following form. It is a symmetric matrix as we discussed yesterday that 

we will be having this 0 along the diagonals. Because this is going to measure the 



distance between 1 and itself and that is 0. This is going to measure the distance between 

2 and 2 that is going to be 0. So, distance from itself is taken to be 0 naturally. These are 

the other entries. Let me plug in these entries 6 5 9 0 and the last row is giving the 

distances as 11 10 2 8 and 0.  

So, this has got a 5 by 5 dimension. So, they are there are naturally 5 cases. So, we have 

5 objects or cases which need to be cluster according to hierarchical clustering algorithm. 

First of all, let us look at a single linkage agglomerative hierarchical clustering. So, this 

distance matrix has got the interpretation that, these are basically the objects, object 

identifications. So, 1 2 3 4 5 this along the columns 1 2 3 4 and 5. These are all the d ij 

entries. So, this matrix is basically the matrix of distances. So, we will have that to be 

given by theses d ij s. For example, this particular term here is the distance between 

object 2 and object 5. Now, suppose we are trying to implement single linkage 

agglomerative hierarchical cluster.  

So, we are trying to implement the algorithm that we have just now learned in order to 

get clusters, hierarchical cluster out of clusters rather. From this particular data which has 

been represented through a distance matrix. If we are going to do that, what is the first 

thing that we will be doing. So, Stage 1 from this distance matrix, we are going to see 

which of the two case cases are closest. Now, if we look at the mutual distances, we find 

that this is a smallest. So, remember what we were doing here, when we were discussing 

these algorithms that will be looking at, find first two cases U and V such that d UV is 

minimum among all such d ij. So, for this given data what is that? These are d ij 

minimum of all these d ij ofcourse excluding 0s.  

Because there is no point fusing 1 with itself; it is already setting in one cluster. So, we 

have to look at all such d ij s such that, i is not equal to j ofcourse. So, we will have this 2 

which is the minimum here. So, this d 52 is minimum minimum among all these d i js. 

So, this would imply that we will fuse 2 and 5 to form first stage cluster first stage cluster 

at a distance level of 2 at a distance level of 2 at a distance level of 2 units. We will have 

to preserve this particular information; because we would require these informations. 

Later on, in order to frame the dendogram diagram. So, this is an input at the Stage 1 

which we need to keep track of. Now, the next thing that we are going to do is that, now 

this let me see, it is not 2 and 5, this is corresponding to 3 5.  



So, we are going to fuse case number 3, 2 5 is here; we are going to fuse case number 3 

from here and case number 5. This is going to be replaced by 3 here. So, we are fusing 

case number 3 and case number 5 at level 2. Now, since 3 and 5 are no longer members 

of single unit clusters, the distance matrix when that needs to be updated. What are the 

existing clusters? The existing clusters will be single turn point clusters, which is having 

case 1 as 1.1 cluster. Second cluster which is having 2 the second unit and then, 4 will 

also be a member. Because that is an existing cluster and the new cluster is 3 and 5. So, 

you will have to find the next distance matrix which is going to be a 4 by 4 distance 

matrix, wherein the 4 clusters are 1 2 4 and 1 2 4 and 3 5. 
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So, this is Stage 2 of this clustering algorithm, updation of distance matrix. Now, the 

distance matrix D is now going to be a 4 by 4 matrix, wherein the distances are the 

distance is corresponding to the previous terms there. So, we will have from the previous 

expression only this one case here, one cluster here which is new to us. These 1 2 and 4 

are existing clusters. So, there is one new entry here, and these are 1 2 4  which are 

existing clusters. So, we will have along the diagonal similarly 0s. Now, these distances 

note that the distance between 2 and 1, between 4 and 1, between 4 and 2 are already 

present in the previous distance matrix. Distance between 1 and 2 or the clusters which 

are not yet merged. Distance between 4 and 2 which is going to be given by this; they are 

already present in the previous cluster.  



So, what will be doing is, just to copy them from the previous expression which is the 

following that, we will have this distance between 1 and 2. Let me just see once again 

distance between 1 and 2 is 9. So, we just plug in 9 out here; distance between 1 and 4 is 

an entry which is required 1 and 4 is 6. So, we will have this entry as 6 and similarly this 

is the distance between 2 and 4 which is 5. Now, these entries here these 3 entries what is 

this? This is the distance between the newly formed cluster 3 5 and 1, which is not 

present in the previous diagram there.  

From the previous distance matrix, what we had done was since these two were the 

merged units, we will have to delete all these entries from here; that is what we have to 

do because those two have been merged. Now, we will have to compute this, we will 

have to compute this and we will have to compute this. So, what are those things we will 

require the distance between the cluster 3 5 and 1. Now we are on a single linkage and 

hence, we would look at the minimum distance between 1 and 3 and the distance 

between 1 and 5; 1 belonging to this cluster here; 3 belonging to the point here and 5 

belonging to the fused cluster. So, from the previous distance matrix, we will actually 

look at what is d 13? And what is d 15?  

From the given data, they can easily be found out what those quantities are are 3 and 11 

and the minimum of that is equal to 3. So, the distance between the newly formed cluster 

3 5 and 1 is thus going to be 3. So, we will have the entry here as 3. Similarly, the 

distance between 3 5, the newly formed cluster and 2 would be the minimum of the two 

distances, distance between 2 and 3 and the distance between 2 and 5. So, we can find 

out that also from the distance matrix, the original distance matrix and hence, we will be 

able to fill up this particular table which would turn out to be 7. Similarly, this distance 

between the 3 5 new cluster and the cluster which is 4 which is obtained as 8. So, this 

distance matrix is the updated which is the updated distance matrix.  

So, what we said is, if we have an n by n distance matrix to start with at the first step, 

two cases are going to be fused. We will be having an updated distance matrix which is 

going to be an n minus 1 cross n minus 1. So, we had here 5 cases. We had started with 

the distance matrix 5 by 5. Now, we have come down to 4 by 4. So, that completes the 

Stage 2 here. Now, Stage 3 Stage 3 is basically the second step of iteration, wherein we 

are now going to form two new cluster or rather we are going to fuse 2 new cluster two 

old cluster to form a new cluster. Now, we will look at this distance matrix, at the 



benchmark distance matrix and then, try to find out which of these units are closest to 

one another.  

Now, if you look at closest, we will have this 3 as the minimum that is now coming in 

this modified or updated distance matrix. So, we look for minimum distance minimum 

distance in the updated distance matrix and that would lead us to fusing this 3 5 cluster 

and the single turn cluster which was having case number 1 as the entry. Now, what we 

have to do is to take a note of this particular fact that, this 1 3 5 are getting merged into 

one single cluster at what distance. If 1 is very particular, one should actually write it in 

this way that, 1 is getting fused with the cluster which was containing 3 5; two units at 

what level, the level is 3. So, this is the second information that, one needs to store the 

first information.  

We had stored that 3 5 merged at level 2 and now 1 and 3 5 were merged at level 3. 

Now, note that from the previous distance matrix now, neither 1 would be present in the 

next step of updated distance matrix nor will 3 5 be present. So, we cannot have anything 

corresponding to this row here 1. This also would vanish and the corresponding column 

corresponding to this one also will vanish; because we are not going to have one entry 

there. So, we will have to update the distance matrix. So, that brings us to stage number 4 

Stage number 4 updation of new distance matrix. Now, what is going to be the 

dimension of that particular distance matrix? The previous distance matrix had a 

dimension 4 by 4. 
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So, the new distance matrix which would now be having this 1 3 5 as a standing one 

cluster and 3 and 4, 2 and 4 to be the other two existing clusters. Can it forward from the 

previous step of iteration? And hence, we will have in total 3 clusters. Hence, the 

updated distance matrix is going to be a 3 by 3 matrix; wherein, we will have entries 

corresponding to now this case number 2 is an existing cluster. So, this would remain as 

it is and we have a new cluster now which is 1 3 5; this is 1 3 5; this is 2 and this is 4; 

this two are existing cluster. So, we will have a 3 by 3 distance matrix, wherein we need 

to compute something and something will be carried forward. What are the things that 

would be carried forward?  

Now, this is an entry which is going to give us the distance between case 2 and case 4 

which we will be having from the previous table itself. So, the distance between 2 and 4 

or the distance between 4 and 2 are same. So, that would be 5. From the previous table, 

we will have one entry out here, which is going to be 5. What is this entry? This entry 

these needs to be computed, this is the distance between the cluster 1 3 5 and the cluster 

2, which is an existing cluster. This is a new cluster and this is a distance between 1 3 5 

cluster and the cluster which is 4. Now, we are going to compute that, exactly in the 

same way as what we had done previously. So, this is going to be the minimum of the 

distance between…  

Now remember 1 and 3 5 have been fused. So, one can find the distance between 1 and 2 

and the distance between 3 5. Because 3 5 is an identity, which is carried forward from 

the previous step. So, we can find out what is the distance d 1 2 and the distance d (3, 5), 

2. And then, find out what is the minimum of these two distances from the given data? 

What it turns out is that, this is d 1 2 is given by 9 and d (3, 5), 2 which is coming from 

the previous table d (3, 5), 2 is 7; this is 7. So, the minimum is 7 and hence, the distance 

between this newly formed cluster and the old cluster 2 is 7. Similarly, this distance 

between 1 3 5 and 4 is going to be given by minimum of d 14 and the distance of 3 5 and 

4 from the tables, this from the previous table one can similarly compute this as 6.  

So, this is now the updated distance matrix at this second stage of iteration updated 

distance matrix. So, once we have this updated distance matrix, we move on to the third 

step of iteration. At stage 5, which is basically the third step of iteration, we look at this 

updated distance matrix and find out, which distance is minimum. Now, we note that this 

is the minimum, if i is not equal to j from that distance matrix and hence this distance 

between 2 and 4 is minimum. So, that that would imply that, we are required to fuse this 



case number 2 and case number 4 to form a new cluster to form a new cluster. So, once 

we have these to form a new cluster, the information about this fusion of cases and the 

mutual distance needs to be preserved. Because that is what is going to be required, when 

we are going to construct the dendogram diagram.  

So, we will say that this 2 and 4 has been merged at a level which is at a level of distance 

5. So, at the third step of iteration, we have this information to be retained. Look back at 

the other information, this is the first information that we have retained. This is the 

second information that we have retained at the second step of iteration; the previous one 

at the first step of iteration and this at the third step of iteration. Now, what is the 

situation at the end of this third step of iteration? At the end of the third step of iteration, 

we have got 1 3 5 to be a one cluster unit and 2 4 to be another cluster unit. So, we have 

two clusters now. Now, we will have to fuse them together; the only point of interest is 

to see at what distance level.  
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So, we come to this stage 6 now, once again it is after the fusion, we have to look at the 

distance matrix updation. So, when we look at this distance matrix updation, we will now 

be having… In the previous distance matrix, it was a 3 by 3, 5 by 4, 4 by 4, 3 by 3. And 

now, we will be having 2 by 2 distance matrix and what are the entries? The first entry is 

1 3 5, that is the existing cluster and we have 2 4 to be the newly formed cluster. So, we 

will have this 2 by 2 distance matrix. Only one element is important, because the other 

entries are 0s. Because that is, the mutual distance between 1 3 5 cluster and itself and 



the distance between 2 4 cluster and itself. So, this is what we need to find out and what 

is that?  

This is the distance between the cluster 1 3 5 and the cluster which is 2 4. Now, how is 

that going to be obtained from the previous table? We are trying to look at the distance 

between 1 3 5 and the cluster 2 4. Now, we will be looking at 1 3 5 cluster and an unit 

taken from the second cluster that is 2 and then, we look at the distance between 1 3 5 

and an unit taken from the other unit taken from the other cluster which is unit number 4. 

So that, this would actually turn out to be, that will be required to find out the minimum 

of 1 3 5; this is an existing cluster and newly formed cluster unit, that is 2 and the 

distance between 1 3 5, this cluster and the unit 4 which is now fused with 2.  

Now, the entries corresponding to this, can be obtained from the previous table 1 3 5 and 

2 that is 7 and 1 3 5 and 4 that is 6. So, we will have the minimum of 1 3 4… Let me go 

back once again, 1 3 5 and 2 is 7 and the next is 6. So, we will have minimum of this 7 

and 6 which is 6, thus this is equal to 6. So, this is at the last step of iteration. This is 

updated distance matrix, after the fusion has taken place. So, from this updated distance 

matrix, we will look at this and then, we will any way have to fuse. Because there are 

two clusters and we have to have one single cluster at the end of the day, at the end of the 

agglomerative hierarchical cluster analysis. And hence, we see that this natural is the 

only entry which is also the minimum.  

So, we will say that at the last stage which is stage 7, we will fuse this 1 3 5 cluster and 

the cluster which is containing these two cases 2 4 at a level level of distance 6. So, the 

last bit of information that we need to keep is that 1 3 5 and this 2 4 all coming into one 

cluster. Let me still put a back at here. So, that this cluster and this cluster are merged at 

a fusion level of 6. So, this is at the end of the 4th step. Now, we look back at the output 

of this particular algorithm. This is one that we are going to take; this is the second input 

that we are going to take; this is the third input that we are going to take and this is the 

last input that we are going to take. Now, the thing that remains is the last stage. Stage 7, 

which is construction of dendogram tree from this output of the algorithm, dendogram 

tree. 
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Now, in order to do that, as I said that we need to collect this entire information. This 

line is not particularly straight. So, this on this y axis, we have distance being measured 

and here we will have the case. Let me just mark them, say this is 1 2 3 4 5 6 7 8 9 and 

10; suppose these are the distances. So, this is a distance 2; this is a distance 4; this is the 

distance 6 8 and 10. Now, we look back at the output of the system, this is what we are 

first going to consider. So, we will fuse to a 3 and 5 at a level 2. At a level 2, this case 

number 3 and case number 5 are the ones to be fused at this particular level which is 5 

level 2. So, we will have this is the first input basically, that is what we have from this 

algorithm; 3 5 merging at distance level 2.  

What is the next? 1 3 and 5 merged at level 3. So, how to represent that? 3 and 5 are 

already there. So, you will have this as case number 1. Now, we will have this being 

fused at what level? I just need to look at that, at level 3. So, this is the distance. So that, 

we will have corresponding to this distance 3, these 3 cases one is getting merged with 3 

5. So, this is that at level 3. So, this was if this was a first step of iteration being 

represented in the dendogram; this is the second step of iteration. Now, what is the third 

step iteration? This is the second step. At the third step of iteration, two new clusters 2 

and 4 are merged at a level 5. So, there are two new cases 2 and 4; these are two new 

cases.  

They are going to be merged at this level, which is distance level 5. So, we will have the 

two branches corresponding to these two cases 2 and 4 getting merged at this level 5. So, 



that is the third iteration input that is, what we have got and this is 3; this is not 3; once 

again this has to be the 4th step of iteration. So, this is the 4th step of iteration. We will 

see that, 1 3 5 an existing cluster and 2 4 another existing cluster is now getting merged 

at a level 6. So, this is an existing cluster, 2 4 this is another existing cluster. They are 

different up to the distance level which is 6 here and then getting merged to form the 

single cluster. So, this is the distance level 6 at which they are getting merged. 

So, the figure that we have obtained here is the dendogram tree. Now, this dendogram 

tree is to be interpreted exactly in the same way as, what we had seen for the general 

discussion on such interpretations of dendogram tree. For Example, if we put our 

reference frame somewhere here, say suppose this is the reference frame, reference 

distance frame or the view point. So, from this dendogram tree, if we say that 4.2 is in or 

4.2 or 4.3 is a distance, at which we are going to look at the hierarchical cluster. So, the 

clusters below those are one single turn cluster which is 4; another single turn cluster 

which is 2 and there is one big cluster which is having cases 1 3 and 5.  

So, as you can see, this constructed dendogram now is a perfect example of a 

hierarchical structure; wherein, it is a tree structure in the tree structure in the sense that 

you can look at this particular line to represent a branch of a tree below which all the 

cases are sub branches. If you look at this particular level then, there are two branches of 

the tree. In one branch, there are two cases 2 and 4. In the other branch, there are three 

cases which are 1 3 and 5. If we truncate the tree at this particular level, there are three 

branches coming from that particular level which is having 4 2 and 1 3 5 in three 

different clusters. So, that is how a dendogram is constructed for a given higher 

dimensional multidimensional data.  

We can actually replicate the algorithm, the numerical algorithm that is what I try to 

illustrate in order to get to such a dendogram tree. With only one thing to remember that 

when we were looking at this particular example, we started with the distance matrix. 

For any practical data set, what will be having is say x 1, x 2, x n. If we have this… Let 

me write it in a separate page for n data points n data points x 1, x 2, x n. These are all 

multidimensional data say these are belonging to R to the power p. From these data, 

obtain the distance matrix; obtain this n by n distance matrix; there are n cases. So, n by 

n distance matrix and then proceed with D to update this hierarchical clustering 

dendogram tree structure. 
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Now, what we will do is that we will look at example number 2; wherein, I will try to 

look at a complete linkage algorithm being implemented. Let us start with this distance 

matrix which I think is the same as what we started with the single linkage. So, the 

entries here are 0 9 0 3 7 0 and then, we have 6 5 9 and then we have 11 10 11 10 2 this 

has to be 0 2 8 and 0. So, these are the different objects first object, second object, third 

multidimensional object, forth multidimensional object and fifth multidimensional 

objects object. So, we will have 1 2 3 also along the columns. So, this is what the 

distance matrix is. So, from this distance matrix, we are going to obtain a complete 

linkage agglomerative hierarchical cluster dendogram tree. 

Now, what we are going to do, I am going to write less as what compared to the previous 

example. So, at the stage 1, we look at this distance matrix and look at which of the two 

cases are most similar. So, we see that this d ij is minimum except those which are all 

diagonal; because that does not make any sense. We will have this as the minimum 

which is distance between 3 and 5. So, we will have this fuse 3 and 5 at level 2. So, we 

have the first output, which is 3 5 getting fused at level 2. Up to this particular point, the 

algorithm has not at all differed from the type of algorithm which is used for the single 

linkage. 

Now, when we have this, we need to go to the second step of this algorithm which is 

updation of the updation of this distance matrix. Now, the new distance matrix will have 

an identity, which is 3 5 and then we will have the existing cases which is 1 2 and 4. So, 



this is that 3 5 1 2 and 4. Now, as before we will have some entry is coming directly 

from the previous table like the distance between 2 and 1 distance between 2 and 4. So, 

those are going to be exactly what we have in the previous structure which is what we 

have as the following that this is 9 6 and 5. So, these are what are coming from this 

particular table itself. 

Now, in order to update the distance what we say that this cannot be present now. We 

have to delete this. We have to delete this particular term also and also the row wherein 3 

is present. So, this also gets deleted and then this also will be deleted. So, we will have 

these remaining 9 6 and 5 as you can see 9 6 and 5 coming directly from there. These 

two are the quantities that we need to compute. What are those? That is the distance 

between 3 5 and 1. Now, we are on a complete linkage. So, we will find out what is the 

distance what is the maximum distance between any object taken from the one group 

there. So, d 13 and d 15. So, d 1 3 is 3 and d 1 5 is 11. 

So, the maximum of 3 and 11 would just be given by 11. So, this under a complete 

linkage would now be given by 11 which is different from what it was for the single 

linkage. Similarly, this particular element here we need to find out what is the distance 

between 3 5 and 4. And that is going to be the maximum distance between distance 3 4 

and distance 4 5 which are coming from the previous table that is 10. The maximum is 

going to be given by this 3 5 2 would be 10. And then, another entry is required which is 

distance between 3 5 and 4, which would turn out that it is 9. 

So, we have these three new entries, which this is giving the distance between 3 5 and 1, 

which comes from the updation of the distance matrix. Distance between 3 5 and 2, 

distance between 3 5 and 4 which is 9; the maximum distance between 3 4 and 4 5. So, 

that, we will have 3 5 and 4; this is equal to 9, and the other one will be equal to 10. So, 

from distance this distance matrix, now would be used when we are now looking at 

fusing two new cases. As we will see here that this is the minimum minimum among the 

remaining d ij and hence the two cases are going to be fused. And then, we will construct 

the dendogram corresponding to this this example in the next Lecture. 

Thank you  


