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The examples that we have considered till now, we saw that the data at our disposal, 

what the population variance covariance matrix or for that matter population correlation 

coefficient matrix, that is the variance covariance matrix of the standardized variables. 

But in most of the situations in reality, what we will have at our disposal is basically the 

data matrix. We may have P variables with as x 1, x 2 to x p, and we shall have n 

independent observations on each of these P variables, and from that data from the 

scratch, we have to calculate the principal components - the sample principal 

components to do a complete analysis. So, now we take up the computation of principal 

components from such given data matrix, that is from the given data on a multi-

dimensional random vector.  
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So, that is what we have with us now, that is computation of the principal components 

from a data matrix. We have at our disposals as we said that we have P variables on 



which we have on each of which we have n independent observations. So, we prepare the 

data matrix say script X which is of the dimension P by n which means that we have the 

P random variables and n observations on each of these. And hence, the elements are 

arranged in this way x 11 up to x 1n, x 21 to x 2n, and the last row being x P1 to x Pn. 

So, what we have is the first row is giving the first random vector, the sample of that 

random vector of the first random variable, and n observations of the first random 

variable x 1; these are the observations coming from that variable x 1.  So, these are x 11 

to x 1n , the first subscript 1 is talking me, telling me about the random variable that we 

have at this stage; that is x 1, and the second subscript 1 to n is tell me about the number 

of observations that I have on this variable. 

Similarly, in the second row, I have the second data and n observations on that variable 

and P th row is giving me the information on the P th variable. If you consider the first 

column, it is you have all the values of all the variables x 1, x 2, x P at the first instance 

at the first case that is the second subscript here is 1. So, we have, what we have is n 

independent observations is n independent observation that we have arranged in this way 

from a P-dimensional that is how we have the first dimension of the data matrix, P-

dimensional population with mean vector mu and variance matrix -  variance-covariance 

matrix sigma. 

(Refer Slide Time: 03:40) 

 

From here, what we can have is the sample mean vector. So, let us say the sample mean 

vector is denoted by x bar and it is nothing but the elements, since x is P-dimensional, 



the data vector. So, we have this also as P dimensional and we have x 1 to x P; 

obviously, the first x1 is the sample mean of the first random variable that is, x 1 j from 1 

to n that is, the first row elements of the first row from the matrix and similarly, go down 

to the P (( )) search random observations, j of them j from 1 to n takes some of these and 

divide by n to get x P j. So, these are not vectors, we have to write them. In fact, we have 

the mark that is x 1 to x P and these are the sample means from each of the cases.  

So, we have an upper bar actually, these are all elements making up the P-dimensional 

sample mean vector. Similarly, the sample variance covariance matrix have S and this is 

1 by n minus 1 and then the first row is nothing but x 1 j minus x 1 bar square and then 

the covariance between the first and the second; So, consider x 1 j minus x 1 bar x 2 j 

minus x 2 bar and similarly, the last one is x 1 j minus x 1 bar with x P j minus x P bar. 

The second the (( )) element is the sample variance for the case of the second variable; 

that is x 2 j minus x 2 bar square, all these summations are over j from 1 to n and the last 

one in this row is x 2 j minus x 2 bar with x P j minus x P bar and the P (( )) are the last 

element which is the variance corresponding to P, the variable; that is x P j minus x P bar 

whole square.  

So, this is the sample variance covariance matrix, I have with divisor n minus 1. From 

the sample data, our objective we may either have the complete data or we may have 

concise data like the mean vector and the sample variance covariance matrix whatever; 

now from the sample data, our objective is to construct the principal components, the 

uncorrelated linear combinations. Basically these are principal components of the 

measured characteristic, that account for that is the purpose, that account for as much of 

the sample variation as possible. So, this is the crux of the calculation of the sample 

principal components as possible. 
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Now, suppose first principal component, l 1 transpose x is the first sample PC or first 

principal component sample linear combination same thing ; let us say that l 1 transpose 

x j is nothing but l 11 with x 1 j up to l 1 transpose x j in this manner ; put this is l 1 

transpose x j and this is l 1 sum up to l 1 P x P j and this is defined for all j from 1 to n 

and in that case, the sample mean of this component as l x l 1 transpose x bar, and this is 

nothing but 1 by n sum of  l 1 x 1 j up to l 1P x P j sum over j from 1 to n and this 

basically the way we have defined. So, these are nothing but l 11 x1 bar up to l 1P x P 

bar and this l 1 transpose x bar is the notation that we have used and the sample variance 

is l 1 prime x 1 minus, you have to consider the mean out of it.  

So that is, l 1 prime x 1 bar whole square up to l 1 x n minus l1x bar whole square and 

this is divided by the divisor n minus 1. Also equivalently this l 1 x 1 bar minus l 1 

transpose x bar square as l 1 transpose x j minus l 1 transpose x bar along with l 1 

transpose x j minus l 1 transpose x bar transpose, and this is nothing but l 1 transpose x j 

minus x bar, x j minus x bar transpose with l. So, sample variance is also equal to 1 by n 

minus 1 with l 1 transpose x 1 minus x bar x 1 minus x bar transpose l 1 up to l 1 

transpose x n minus x bar x n minus x bar transpose with l 1. This gives 1 by n minus 1 l 

1 transpose sum of x j minus x bar x j minus x bar transpose, j from 1 to n and I have one 

l 1 here. So, this is actually giving the definition of the sample variance covariance 

matrix, this is nothing but 1 by n minus 1 l 1 transpose S l 1.  
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Similarly the sample covariance between l 1 prime x j and l 2 prime x j can be expressed 

as in the same manner l 1 transpose S l 2. So, in this way calculate the Eigen values from 

the sample covariance matrix or the sample correlation matrix, and then calculate the 

associated orthonormal eigenvectors to obtain the principal components. So, the major 

task is to calculate the sample variance covariance matrix and obtain the Eigen values. 

Now let us take an example from real life data. So, real data example has the calculation 

of sample principal components from standardized data. Because that is what you will 

encounter mostly in practical situation, your variables will be from whole gamete where 

they have different sorts of description, interpretation, different units. 

So, the best thing here will be to consider standardized variables. So that, we calculate 

Eigen values not from the sample variance covariance matrix; but from the sample 

correlation matrix. So, that is what we are going to do here; we are calculating sample 

principal components from standardized data and the data in this example are the weekly 

rates of returns from 5 stocks and these stocks are allied chemicals, du punt, union 

carbide, Exxon and Texaco. So, these are listed on the NYSE, the New York stock 

exchange and the weekly rates of all these 5 stocks were determined for the period Jan 

1975 through; it old data does not matter; through December 1976.  
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So, we have daily data and from here we have calculated the weekly rates. The weekly 

rates are defined as current Friday closing price minus previous Friday closing price 

divided by previous Friday closing price; this is one example just to tell you how the 

weekly rates are calculated from the daily data. There are some final issues like these are 

adjusted for stock splits and dividends. We may not go to the detail of this just assume 

that we have this data at our disposal to calculate the sample principal components. So, 

this is how we have calculated the weekly rate from the daily returns of the 5 stocks and 

then we have to calculate that we have a multivariate data. We basically have a five-

dimensional data and number of observations ofcourse the number of weeks that we have 

in this period.  

So, it is a multidimensional data and we are going to look in to the sample calculation of 

principal sample components and give some interpretation to those principal 

components. Now you see the observations. We have the observations in hundred 

successive weeks. So, that the period that we said it has hundred weeks. So, hundred 

successive weeks appear to be, now what we are doing here. We are sort of trying to 

justify our initial setup that we say that we have l independent observations. Now, 

meaning to this setup what we will say that for each day the stock returns are 

independent; these are independent observations. But across the stocks they are not 

independent.  



By which we mean that since these are playing in the market, the returns over each of 

these stocks; they are sort of interrelated with each other. The price of one will influence 

the price of the other and so on. But over different, over the period these are all 

independent observations. So, the observations and hundred successive weeks appear to 

be independently distributed; but the rates of return across stocks are correlated for a 

fixed time point. So, then we have let x 1, x 2 to x 5 denotes observed weekly rates of 

return for the 5 stocks that is allied chemicals, du punt, etcetera up to Texaco 

respectively. Then suppose we have this information at our disposal, the five-

dimensional sample vector is given to us, if not the full data. 

If the full data is given to us, we can easily calculate the sample mean for each of these 

stocks and then give you the sample mean vector. So, whatever be the situation if the 

data is given to us, we will have to calculate it. Otherwise, the sample mean vector as a 

whole may be given to us and this is given by it is a P dimensional vector. Its values or 

the elements are 0.0054, 0.0048, 0.0057 and 0.0037; this is our sample mean vector. We 

have correlation coefficient matrix of these stocks. So, covariance matrix of the 

standardized variables are denotes by Z. So, this is Z 1 to Z 5 where Z i is nothing but x i 

minus x i bar by root x i, this is true for i from 1 to 5 and this matrix is given by 5 by 5 

symmetric matrix.  
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So, this is given by the variances are the measure of correlation coefficient. So, diagonals 

are all 1 and then we have the off diagonals, the correlation coefficients. So, these are 



0.577, 0.509, 0.387, 0.469; again we have 1 and then 0.599, 0.389, quite close values 

0.322, 1 and then 0.436, 0.426, 1 again in this position; 523 and the last element is 

ofcourse, 1.So, this is our sample variance covariance of the standardized variables or the 

correlation matrix of the original variables and we calculate the Eigen values from this 

matrix. So, the Eigen values and corresponding orthonormal eigenvectors, that is all we 

need to get the sample principal components.  

Corresponding Ortho normalized eigenvectors of this matrix are lambda 1 hat is 2.857, 

lambda 2 hat is ofcourse what we said in the very beginning; they are in decreasing 

order. So, that we are listing the values in this manner; 0.809, lambda 3 hat is 0.540, 

lambda 4 hat is 0.452 and lambda 5 hats is 0.343. I am getting the corresponding Ortho 

normalized eigenvector are e 1 hat is 0.464 0.457 0.470 0.421 0.421 this is my first 

eigenvector. The second eigenvector is given by 0.240, 0.509, 0.260, minus 0.526, minus 

0.582; e 3 hat is minus 0.612, 0.178, 0.335, 0.541, minus 0.435; e4 hat is 0.387, 0.206, 

minus 0.662, 0.472, minus 0.382 and the last one e5 hat is minus 0.451, 0.676, minus 

0.4, minus 0.176 and 0.385.  
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So, I have the first principal component using the standardized variables; because we 

have used the correlation coefficient matrix. So, we will mention it that using the 

standardized variables, the first two sample principal components are; the first one is y1 

hat and that is e1 hat transpose Z and that is 0.464 Z1 directly from the first Eigen vector, 

0.457 Z2, 0.470 Z3, 0.412 Z4 plus 0.421 Z 5. And the second one y 2 hat is from using 



the second eigenvector that is e 2 hat transpose Z gives 0.240 Z 1 plus 0.509 Z 2 plus 

0.260 Z 3 minus 0.526 Z 4 minus 0.582 Z 5. We are interested in calculating the 

proportion of the variability explained by the sample principal components.  

We have stopped that two principal components; because for us, it is the easiest to 

manage two principal components. We can easily project the data. There are tw0-

dimensional plane and try and sort of interpret the data. But we must see before that how 

much of the total proportion of variability, these two principal components are 

explaining. So, this is given by the first two sample Eigen values. So, these two 

components account for lambda 1 hat plus lambda 2 hat by sum of lambda i hat that is 1 

to 5; this into hundred percent is 2.857 plus 0.809. You can see here that this is the trace 

of the matrix, sum of the Eigen values of the r matrix. Now, trace of the matrix is nothing 

but sum of 1 up to P times.  

So, in case we are using the standardized variables, the summation lambda I hat as 

simply by lambda 1 hat plus lambda 2 hat by P which is basically the dimensionality of 

the data. So, this is 2.857 plus 0.809 by 5 into 100 percent. So, this let us keep in bracket, 

this is equal to 73 percent. So, from real life data, it is about 73 percent of the total 

variability that, the first two sample principal components are explaining. Now, if you 

look at the interpretation of these principal components, it is quite interesting to see that 

the first principal component is roughly giving a weighted index to all the stocks .It is a 

0.464 with the first 0.457 with Z 2 in this way. So, this y1 hat, this first principal 

component can be thought of a sort of a market indicator, a market stock.  

It may tell you that it is basically giving you the weighted average of all the stocks 

prices. The second one is grouping the first 3 and then it is grouping the last two. So, 

basically the first three stocks which are coming from the chemical companies. It is 

weighing these in one fashion and then it is sort of segregating out from the other two 

which are sort of together industry stocks of Exxon and Texaco. So, let us give this 

interpretation briefly. I will write this interpretation the first (( )) sorry the first 

component, the first PC is roughly equally weighted sum. If you look at the weights, the 

Eigen values are almost equal, roughly equally weighted sum or sort of a market index or 

index of the 5 stocks. 

This principal component that is, y 1 hat can be thought of a might be called a general 

stock market or just a market component and the second principal component represents 



a contrast between the chemical stocks; that is the first three allied chemicals, du punt 

and the third one is union carbide and the oil stocks, the last two that is Exxon and 

Texaco. You may also go on calculating the other principal components, the third one 

will also come and the fourth one will come. Now, these may have positive negative 

signs with any of these variables and these may not be so easy to interpret. But ofcourse, 

if you are not satisfied with 73 percent of total variability been explained, you can go to 

the third principal component, and together you can see that how much of the total 

variability the first three are explaining. 

Now strictly speaking, when we are handling real life data, we should stop at three-

dimensional; otherwise the whole purpose is lost. We are trying to visualize the picture, 

the multidimensional data if it goes beyond three-dimensional; it is really of no use to us. 

So, and if we can give such nice interpretations or sort of it gives us some satisfaction, 

that there is some nice interpretation to the principal components that we obtain. So, we 

end this example here. Next we take up the situations where we start from the scratch 

that is from the data and I shall show you how you can use the sass software to calculate 

the principal components with given data. If you recall that, initially we had talked about 

the various uses of principal component analysis; that is, after the data dimension 

reduction what all we can achieve through that and I am going to explain you in detail on 

those aspects of the uses of principal component analysis. 
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So, this is the principal component analysis. It is a part of multivariate exploratory data 

analysis technique. If you recall, we have told initially that the major uses of principal 

component analysis are data dimension reduction. We start with a P dimensional random 

vector. But ultimately we come to a k dimensional principal components; k ideally two 

or at the most three and what does this reduction in data dimension do. It helps us to 

project the multivariate data and visualize the various characteristics of the data. Now, 

once we project the multivariate data in the two-dimensional or three-dimensional 

planes, it serves some other purposes we can see whether there is any outlier present in 

the data. Hence we have multidimensional outlier detection.  

We have an idea about the data cloud clusters that is the grouping of the various data; 

some of them will form one group; some other will form another group in this way. We 

can also do ranking of multidimensional data. How will we have the first principal 

component; on the basis of the first principal component, if you have now the ranking of 

multidimensional data. So, this is our example where we start from the scratch and use 

the sass software to calculate the principal components. It is a branch of multivariate 

exploratory data analysis and if you recall, the major uses of principal components what 

we have mentioned in the very first session on this p c a those were that data dimension 

reduction where this is the crux of the backbone of the whole thing.  

We start with a P dimensional data vector. But we come down to a k dimensional 

principal components vector; k ideally is 2 or at the most 3. So, we can visualize the 

multidimensional data in a two or a three-dimensional plane. Now, once we can project 

the data, so the reduction of data helps us in the projecting the data and visualize it. Once 

we are able to project the data, we can view certain other characteristics of the data; 

major of these being that we can see whether if there is any outlier present in the 

multidimensional data or if the observations or variables are forming any groups. So, that 

is idea about data cloud clusters. We can also rank the multidimensional data, if we have 

a p dimensional data, you have x p.  

So, how you rank this you have x 1 to x p. So, that is p such variables and you have n 

observations on each of these variables, how you rank such data. Now, what we do is we 

calculate the first principal component y 1, which is the first principal component. For 

the first case, that is the first variable we have the first group of observations that is, if 

we call it x 1 that is first cases you have x 1; that is the first observation on all the 

variables x 1, x 2, x p. From here we get y 1 and then we go up to such n cases; that is we 



have total of n cases, case n and I combine that in the nth vector from where we have y n. 

So, basically these are all y 1 to y n are the values of the first principal component and 

then I can rank among these variables; because these are now reduced to one-

dimensional data.  

I can easily rank these one-dimensional data and obtain a ranking of the 

multidimensional data. Similarly checking for multivariate normality, by definition we 

have that x is going to follow a multivariate normal distribution say normal P mu sigma, 

if and only if every linear combination of x that is in prime; x follows univariate normal. 

Now, we see that the principal component again y, we have k such principal components 

y 1, y 2 to k and these are nothing but e 1 transpose x up to e k transpose x. These are the 

principal components; these are all linear combinations of x. So, this is our p transpose x 

matrix.  

So, we check for the univariate normality of each of this y 1, y 2 to y k and if anyone of 

these are not univariate normal; we have reasons to believe that this x data vector is not 

coming from a multivariate normal population. You also may have observational sample 

of size n. So, you have x 1, x 2 to x n. From this multivariate normal population, you 

have first principal component; you check it the first principal component what are the 

observations you have y 1. So, say for y 1 the first one you have these n observations y 1 

giving n. So, basically you have a sample of size n from univariate normal distribution; 

you have to check it that whether it is actually coming from univariate normal 

distribution which we all know.  

There is certain ways blocks and certain other things from which you can check it and 

then if it is satisfied then you say that it is coming the first principal component; that is a 

1 linear combination is coming from the univariate normal distribution. Similarly, you go 

and checking up to the k, the principal component that is n observations, again the 

sample of size n from a univariate normal distribution. Checking that and if all these are 

satisfied, we can believe that x is coming from these observations are coming from a 

multivariate normal population. If one of them is not satisfying the univariate normality, 

we may say that these may not come; this data x 1, x 2, x n may not come from the 

multivariate normal population. 
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Now, the example that we do the first one is we have this is the famous iris data 

published by fisher; very old data 1936, it has been widely used for examples in other 

branches of multivariate analysis also like discriminant analysis and cluster analysis. 

Now, what has been collected here is the data on the iris specimen. This is a type of a 

flower and there are three spaces of this iris flower are the iris setosa, iris versicolor and 

iris virginica and four characteristics on each of these three types, data on the four 

characteristics are collected. So, this is a just a snapshot of this four-dimensional data 

and you can say this is a 150 by 4 data matrix. So, in all we have 150 observation 

vectors.  

Out of which how many are for this first species, how many for the second that is we can 

see if it is fine there; otherwise we have to find it out from this data. Here we have only a 

part of the data. So, the first characteristic is the petal width, the second is petal length, 

the third is sepal width and the fourth is sepal length; st stands for iris setosa. So, for this 

we are using st, for iris vesicular we are using vs and for iris Virginia we are using vg 

and these are the data, these are the length in millimeters of this 50. It gives that there are 

50 specimens from each of the three spaces. So, that makes it 1; 50 it is given here; this 

adds the part of the data, let us see what we can do with this data. 

Now what are we going to do easily you can guess it that if you can project this four-

dimensional data on a two-dimensional plane and see that if there is any link of these 

with the measures of the characteristics and the type of the species. From this snapshot, 



you can see only with the first characteristic that is petal width. Whenever it is iris 

setosa, you can see that it is a small value; it is about two millimeters. So, petal width is 

really small with respect to the other two spaces; but what happens to the other three. 

When you consider the other three characteristics, very readily you cannot say anything 

and it is just a four-dimensional data in front of you. So, to get something from this data, 

we try to project it in a two-dimensional or atmost a three-dimensional plane.  
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So, the next thing is the sass code for calculating the principal component. So, this is 

how we have named these are comments. So, these are put within the slash star and we 

have stored this data. I named it as iris; it is given in this editor itself. So, it is with card 

system that we have put the data and these are the four characteristics the petal width, 

petal length, sepal width and sepal length. 
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So, we have entered the data run it and then we call proc princomp that is the sass 

subroutine for it; that is procedural princomp. We have data is iris; that is how we have 

named our data and out (( )) is printout. We sort by the first principal component; that is, 

we rank the data by the first principal component. We also plot the data and we obtain a 

two-dimensional plot of principal component one by principal component two.  
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This is the number of observations, number of variables that there are four 

characteristics. So, that is four and the mean of the different characteristics that is x 1, x 



2, x 3 and x 4, the four characteristics; these are the sample mean. So, that is the first one 

was petal width, this has the sample mean; next is petal length, sepal width and sepal 

length. Similarly, the sample standard deviation, this is the sample correlation matrix. 

We have calculated that is for the standardized values and then, Eigen values are 

calculated from the correlation matrix; these are the 4 Eigen values ordered. So, in the 

decreasing order, the first one being 2.91 then 0.91, 0.15 and 0.02.  

This is the successive difference and this is the proportion of variability. So, this is 

important to us the proportion of variability that each of these Eigen values is explaining 

and this is the cumulative part. So, this is the first variability explained by the first 

principal component. First two principal components explained 96 percent of the 

variability and when I take the first three, almost the total variability is getting explained; 

because you see here it is .994. So, I think in this situation, the first two principal 

components are good enough; because the two together are explaining 96 percent of the 

total variability. 
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These are the principal components in the sense that we have the constants; that is the 

coefficients given to you. So, these are the values, the first principal component; these 

are the coefficient of this variable. We have to calculate the principle the case by case 

value of the principal components with the given value of these characteristics; these are 

the coefficients given for each case.  
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This is the screen plot. It gives you that the number of Eigen values that is the first Eigen 

value is close to 32. 9, something the second one is 0.91. So, that is this is the value, the 

third one has this value and the fourth one is this. Now, the screen plot comes down in 

the shape of an elbow may be called the elbow point of the screen plot. So, this is sort of 

the elbow point here and then it flattens out. So, this elbow point tells out that we can 

stop at this point, at this number of Eigen values, at this number of principal components. 

There is no reason to go beyond; actually in this case, even if we stop here, it is good 

enough. So, this is the significance of this screen plot. It actually plots the values of the 

Eigen values and tries to see that at which point you have the elbow point.  
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This is just four-dimensional; but you may have much higher dimensional data and in 

that case, it sort of useful to us and this is the three-dimensional scatter plot. We look at 

the three-dimensional scatter plot of the data. We have all the three axis; here principal 

component 1, 2 and 3.We try to see that if we can see any grouping, any outlier; this is a 

sort of an outlier; this is the first one st and these are vs and vg. So, you see vs and vg are 

sort of clocked together and st the first group, the first species is forming a cloud of its 

own. These are totally mixed up; it is very difficult. But still you see that on this side, 

you have some of the vg s which have separated out here. On the lower part, some of the 

vs have separated out and the middle portion is this vg s and vs s are totally mixed up.  
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So, let us go to the next plot and this is again a 3D scatter plot. But it is given from 

another orientation; here it is sort of much clearer about. We can see clearly the three 

groups; the first one that come nicely in this type of 3D plot. 
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You may say that some of these like here one and here mainly the third species, some of 

them are outliers. If we do it in the two-dimensional plot that is we are only considering 

a principal component one and principal component two, these are the two access. Here 

also the grouping comes quite nicely. The lowest one is giving you the first species. The 

red color one is the second one vg and the third that is the green color is giving third 

species vs or again we can see some data outliers in these situations. So, these are the 

principal components for the case by case, you put the value of the characteristics, obtain 

the data and plot these here to get these plots. 
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Our next example is about some financial variables. This is a feasible component 

projection of profitability of banks data what we have is the sort of a number of financial 

variables on the banks balance sheet ratios, financial management ratios and profitability 

ratios. These are some of the very important characteristics of the performance of banks. 
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So, these are the data basically we have and these are the abbreviated forms of the data 

and what we have is data on all those characteristics for some private sector and public 

sector banks of the Indian economy. This is again snapshot of the multidimensional data; 



this is huge data we have. We have looked in to a number of financial variables for a 

number of banks. So, both P and n is quite high in this case and this is a snapshot of that 

data.  
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Now, what we do in this case is we separate out the private sector banks and we have 

calculated the principal components from the sample data that we have. So, we have first 

segregated the private sector banks and the public sector banks and then calculated the 

sample covariance matrix or the correlation matrices for each of the two cases. Then we 

have done the grouping separately ofcourse, you can do it in a same plot also; that is 

without segregating private sector and public sector banks. Basically, it depends on the 

purpose on your privative what you were trying to see. So, here we are trying to see, how 

the variability of the private sector banks among themselves; they are getting explained 

by the characteristics. 

Similarly, how these characteristics are going to explain the variability present in the 

public sector banks. If it is for the whole banking system of the country, you will do it 

for the combined data. So, this is the first one for the private sector banks and we have 

plotted that, the first two principal components were sort of good enough for us .The 

exact proportion of the variability etcetera are not stated here; the main thing is we are 

looking at this sort of groups and clusters here. However the first two principal 

components served our purpose and then we projected the data on a two-dimensional 



plane and then we sort of trying to see that based on the characteristics whether we could 

form groups of banks; that is performance of the banks.  

Based on the variability of the characteristics that are given, these can be said to be they 

are more or less same; they fall in the same group. So, in this way we have some of the 

banks, which are totally falling outside the clusters. So, they can be termed as the outlier 

and some of them are coming in one group. So, we can say the performance solely on the 

variability present on those financial ratios that we are considering. So, based on that, 

these banks come under one group; these private sector banks come under one group and 

so on.  
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The second one is for the public sector banks. You can see that you have similar sort of 

grouping possibly for the public sector banks. Here also we are projecting it on the two 

dimensional plane. So, it means that we are satisfied with the variability explained by the 

first two principal components. We see that here, you can see the State bank of my sore 

is an outlier here and the Indian bank probably for that data period had a major setback. 

So, this is one outlier here; otherwise you can see the UBI and UCO bank; they are in 

one group doing not too well at that time. And here, we have one group of Allahabad 

bank, Punjab and Sind bank, overseas bank, SBI and Bank of India.  

Similarly, some other banks here, we have a group of Canara Dena, Bank of Baroda, 

Andhra bank and again a small group here for the OBC and the Corporation bank and 

Vijaya Central bank and one other is forming a group here. These are mainly the SBI 



group, the SBI Saurashtra and then we have SBI Indore and another one SBI. This is 

some other group of the state bank. So, this is about the public sector banks of India. The 

data period is probably not mentioned here. This is again with respect to that data period 

it is not mentioned; it is also an old data about a may be a data of the 1990s. These are 

the financial variables that we have here.  

So, number of them are the characteristics giving you the dimension of the data and the 

observations, you have the number of banks. So, this exercise can be repeated for the 

whole banking industry of the Indian economy, if you combine the private sector and 

public sector banks, and then project the whole data. But for this type, we were mainly 

interested in the analysis where we were comparing the different sectors within 

themselves and hence, we obtained this sort of plots. So, this is how we can make some 

very nice use practical applications of principal component analysis.  

With the help of this technique, we can really do some intelligent analysis of the 

multidimensional data which otherwise is just a group of haphazard data to us. We 

cannot do any ranking. We cannot do any projection of that data. We cannot make out 

any meaningful conclusion or interpretation of such data. It is just like a jungle of data in 

front of us; out of which you cannot make out anything; but if you can reduce the 

dimension of the data that is the crux of it. If you can reduce the dimension to k equal to 

2 or 3, then with the help of the projection of the data, you can not only see the different 

groups, you can also see if there is any outlier.  

The ranking of the data is also possible; ranking ofcourse makes sense if everywhere we 

are saying that it is ranking based on the first principal component. So, obviously we are 

assuming that the first principal component is explaining about atleast above 70 percent 

of the total variability. Otherwise ranking on the first principal component does not make 

much sense and ofcourse if that does not make much sense, then going to the second one 

also is not much helpful to us. So, in this way we can make some nice use of this 

technique of multivariate analysis. 


