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We are going to start this discussion with the topic of principle component analysis. If 

you recall manova - manova was all about partitioning the total variability in the data 

into components, which word you to the difference sources of variation. A principle 

component analysis, it also tries to explain the total data variability present with the help 

of a fewer number of linear combinations of the original data, meaning if I have a P 

dimensional random data vector say which means that I have P random vectors X 1, X 2 

to X P say… Now, I am going to explain the total variability present in the data with the 

help of k new variables say Y 1, Y 2 to Y k, where k is the number which is much less 

than P, and these Y, i’s are actually linear combinations of the original variables X 1, X 2 

to X p. 

So, so basically you can see the broad objective of principle component analysis is 

reduction in the data dimension; now once the reduction, and data dimension is achieved 

we achieve many more things. And one of the most important of which is interpretation, 

data interpretation, data projection, etcetera. 

Now, strictly speaking the all the P variables are required, if I want to explain the the 

variability - the total variability present in the data, (( )) but in most situations we will see 

that our fewer number of the linear combinations of these variables will be good enough 

to explain the total variability. I mean coming parlance this is said that the information 

content of the variables X that is X 1, X 2, X P is as much as the information content of 

the or conversely we should say that information content of the new variables Y’s are as 

much as the information content of the original variables, but we should take this with 

the bit of cushion and we must remember that this is with respect to the total variation in 

the data. 
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So, let us say first just very briefly write what is principle component analysis our new 

topic, this what it is doing in this analysis? What we are basically doing is a PCA is 

concerned with explaining the variance covariance structure, when we say the variability 

- the total variability in the data, this is through the variance covariance matrix of the 

random vector. How exactly that we will see once we define total variability in the data. 

So, variance, covariance structure of a set of variables through a few - this few can be 

really very few like even k equal to 2 or one may be also good enough to explain the 

total variability through a few linear combinations of these variables. Why do we do a 

principle component analysis? So, broad objectives of PCA are the first one is data 

reduction rather we should say data dimension reduction, and the second one being data 

interpretation. Now, in between there are many thing before we can correctly interpret 

the data. So, we will look into all these aspects. 

So, these are the 2 broad objectives, but in between there are many more other analysis 

that will help us. So, and besides an analysis of the PCA, it also it in time it reveal some 

interesting relationships among the variables - among the P variables which were not 

apparent otherwise. So, with the the the crack of the matter always remains the 

dimensionality reduction. So, once we do this, we can see that I can project the new 

variable - the two-dimensional variables say Y 1 and Y 2, and I can have a clear idea 

about the data cluster or if there is an outlier in the data. And of course of course, once 



we while we calculate the principle components, we get interesting relationships among 

the variables. 
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So, how is this done? So, first we have the whole thing is based on the variance 

covariance matrix. So, what we have is the random vector X, which is a P dimensional 

data vector X 1 to X P, and that is the P-dimensional random vector with variance 

covariance matrix sigma. A very general sigma elements of sigma i j, and we preferred to 

write it in the (( )) sigma 1 1, sigma 1 2 to sigma 1 P; and these these are symmetric 

matrix this is symmetric matrix we can write 1 P or P 1, which means basically sigma i j 

is equal to sigma j i. So, that is a P Y P dimensional square matrix, and we assume 

positive definiteness of this matrix. 

Now, we have been saying that total variability in the data, total variability in X is going 

to be explained through the total variability of Y the new variables. So, what we exactly 

mean by total variability or total variation in data, and how is the variance covariance 

matrix coming into the picture with this concept. So, total variation or total variability 

also say in X, this is nothing but trace of the variance covariance matrix as simple as that 

so this is my definition. So, total variation in X is nothing but the trace of sigma which 

means that I consider some of the diagonal elements, some of the variances that is 

summation sigma i i form 1 to P. And then what does PCA attempt to do PCA aims to 

replace the X - this X the hole data vector with some Y.  



And initially, we will look into P linear combinations of the variables. So, that is Y also 

P dimensional Y 1 to Y P, but first we were these Y i’s - these are not just any variables, 

these are linear combinations of the original variables X i’s, linear combinations of X i’s, 

but not just any linear combinations.  
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We must satisfy certain conditions, such that the first thing is I have to remember the Y 

i’s are uncorrelated, note that we have not taken X i’s to be uncorrelated, because I have 

not never said that sigma is a diagonal matrix, just the general variance covariance 

matrix which means X i’s can be correlated also. But linear combinations through which 

now we are going to explain the total variability, these new variables Y i’s they have to 

be uncorrelated; that is covariance between Y i and Y j, this is equal to 0 for every i not 

equal to j, this is the first point.  

The second one is the very thing that we have started with the total variation in X, we say 

that the information content of Y is as good as the information content of X with respect 

the with with respect to the total variability present in the data. So, which means the total 

variation in X is equal to the total variation of Y, but then why do we choose to work 

with the Y, this is the situation, because here comes the most important point that the 

total variation of total variation of Y, which is of Y 1 to Y P, this is actually almost equal 

approximately equal to the total variation of Y 1 to Y k. So, this is approximately equal 

to total variation of Y, when I say total variation of Y i, I mean that all P members of Y 



are present, but the cracks of the matter is this total variation can be explained with a 

much less number of variables Y 1 to Y k. 

So, when I say much less number of variables, I mean that k is where k is really less than 

P much less than the total dimension P. So, these are the three basic features of the new 

variables the principle components which are basically the linear combinations of the 

original variables that we have listed here, they form the cracks of the whole exercise, 

and we have to be careful in constructing our principle components in a manner, so that 

all these three properties are satisfied. 

Now, before we formally define principle component, let us talk about some of the other 

uses of principle components. We had said the broad objectives are data dimension 

reduction, and data interpretation in between there are some other tasks that we can 

accomplish through the construction of principle components.  

(Refer Slide Time: 11:49) 

 

And these are write down the major uses of principle components for principle 

component analysis. What can we what all can be achieve through PCA is of course, the 

first thing is the data dimension reduction, and everything else that follows is basically is 

is essentially following from this fact sorry data dimension reduction. The second one of 

importance is… Once there is dimension a dimension reduction, we can project the data 

in a in our two-dimensional plane or at the most the three-dimensional plane to properly 

visualize the whole thing. So, data projection and visualization, this is possible if we can 



achieve a value of k equal to 2 at the most 3. So, that all the other all the properties that 

we have listed or satisfied, if that can be done then projection and visualization it can be 

done in really nice manner. 

The third one is once we project the data, then there are certain features of the data that 

become a parent to us; that is we can see formation of data clusters. So, idea about data 

clusters, the the various groupings of the data; and of course, if we can project the data in 

a two-dimensional plane we can also see, if there is any outlier present in the data. So, 

that is multidimensional outlier handling, so multi-dimensional outlier detection that also 

can be done. 

And fifth there can be some ranking of the multidimensional data also ranking of 

multidimensional data, and projection of the data can also tell us whether the population, 

whether the data comes from a multivariate normal population or not. So, that is 

checking for multivariate normality. So, we can handle as many things with a PCA, and 

all of these are very important practical application, practical uses the for the multi-

dimensional data checking for last one is checking for multivariate normality. 
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Next, we are going to define formally. What is the principle component? And we say that 

will we have all all we talked about if they are basically linear combinations of the 

original variables, such that certain properties are satisfied. So, this… So, definition of 

principle components. The principle components are the uncorrelated linear 



combinations Y 1, Y 2 to Y P, note that initially we talk about as many number of linear 

combinations of Y’s of of X is as there are number of X variables. So, we talk about Y 1, 

Y 2 to Y P, when we have X 1, X 2 to X P. 

But ultimately we will work with the much fewer number of Y’s, so Y 1, Y 2 to Y k. So, 

initially we say that there is P such linear combinations - P is the equal to the number of 

data variables that we have originally. So, linear combinations Y 1, Y 2 to Y P, whose 

variances are in decreasing order. So now, this is something which we are saying for the 

first time uncorrelatedness of course, we said before. Now, something more we are 

saying we have Y 1, Y 2 to Y P; the variances of these Y 1, Y 2 to Y P, they are in 

decreasing order. So, what we have is variance of Y 1 that maximum say these are in 

decreasing order. So, Y 1 explaining the maximum variability, Y 2 explaining the second 

highest variability, and so on. 

It is it is very logical that we have this criterion on the principle components, because our 

ultimate aim is to restrict the number of principle components to as few as possible. So, 

if this can be possible, if only the first one it can explain the maximum of the variability. 

So, it it can be so high that some sometimes we may be satisfy with the first principle 

component only, and then in that case we will say that the whole data dimensionality has 

been reduced to one, we are happy with the value of k equal to 1 as low as that. So, we 

we have been must have the principle components designed in this fashion, while to 

explaining the second highest variability, and so on.  
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So, what are the the things that, we are talking about that is let us now try to sum up the 

situation. The first principle component, the first PC is the linear combination, will we 

are using the notations Y’s for the principle components. So, the first principle 

component is the linear combination Y 1 the first one, this is l 1 dash l 1 prime x. So, this 

is essentially a P dimensional vector known vector, it should be so that Y 1 is known (( )) 

what what is the linear combination of X that I am using for Y 1, that I am getting for Y 

1. So, that is Y 1 is l 1 transpose X such that, that maximizes variance of l 1 X subject to 

l 1 transpose l 1 is equal to 1. 

Now, why is this required now, I say that this Y 1 formed as l 1 transpose X it should be 

such that variance of l 1 transpose X is maximum. Now that can be if I consider any 

other as as scalar multiplication of the linear of the of this vector l 1, and I consider say 

some l 1 star which is c times l 1, c is the very high constant. So, then I can always have 

variance of c l 1 transpose X greater than variance of l 1 transpose X. 

So, to put a check on that, and to achieve some uniqueness I I require this factor, I put 

this criterion that it is subject to l 1 transpose l 1 is equal to 1. Then the second the 

principle component is the linear combination Y 2, this is some other linear combination 

of the X is X 1, X 2 to X P, such that the variance is maximizes variance of Y 2, that is l 

2 prime X subject to l 2 transpose l 2 is 1. 



And we must have something else here, and covariance between Y 2 and Y 1 is 0, that is 

l 1 prime X. And l 2 prime X this is equal to 0, and in this way I go to the i th principle 

component, i th principle component is the linear combination Y i is l i transpose X, that 

maximizes the variance - variance of l i transpose X subject to as before l i transpose l i 

this is equal to 1. And covariance between l i X with say some l k X this is equal to 0, 

and now this has to be true for all k which is less than i right. 

See, if I go to the third principle component I must check the covariance between the 

third, and the second, and the third and the first as well; and both of these have to be 

equal to zero. Now, what I am saying here, we will this guaranty mean the things that I 

have said before, that is the first thing was that the principle components have to be 

uncorrelated, they should maximize or the first one should have the maximum variance, 

the second principle components should have the second highest variance, and so on. 

The total variability of these Y should be equal to the total variability of X and last, but 

not the least. The total variability of Y can be explained through the variability of of 

fewer number of a very few number of Y’s. 

So, all these things whether those can be satisfied with this type of a construction that I 

am saying for this. We go on to the next thing, let us see that the way that we are saying 

the principle components we are describing they can in fact, satisfy all the properties. 
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So, the first result is let sigma be the covariance matrix, the variance covariance or the 

dispersion matrix associated with the random vector X, the whole exercise will be done 

through the Eigen value Eigen vectors of this sigma matrix. So, the with the random 

vector X the Eigen value, and Eigen vector ortho normal Eigen vectors. So, 

corresponding or the normal Eigen vector pairs of this sigma matrix are l 1, e 1 P of 

them. So, up to l P e P.  

Let us say, where I have lambda 1 greater than equal to lambda 2, and greater than equal 

to lambda p. So, this is how I have arranged the Eigen values, and the corresponding 

ortho normal Eigen vectors, and I have this lambda 1 greater than equal to lambda 2 up 

to lambda p. So, these are in decreasing order, and each of them of course, are greater 

than equal to 0 means for positive semi definiteness also we can have strictly speaking, 

but most most of the situation will have this as positive definite matrix. So, leave it like 

this. 

And then the i th PC is given by we say that the i th PC is given by Y i, this simply turns 

out to be e i transpose X for every i from 1 to p. So, after having said all these things 

what we do is simply consider the sigma matrix calculate the Eigen value, and the 

corresponding I ortho normal Eigen vector, and we see we will see that the i th principle 

component is nothing but a linear combination of this type, where we are taking help of 

the ortho normal Eigen vectors. So, the linear combination that I have is Y i is nothing 

but e i transpose X. 

Now, if Y i’s are this other other property satisfy, they will be satisfy, because 

simultaneously we have something for these Y i’s, therefore these are for every i from 1 

to P with variance of Y I, we will see that this is nothing but lambda i for every i from 1 

to p. So, that another property if you recall of the principle component is a is satisfied, 

that is the first principle component will satisfy the maximum variability, its its variance 

will be higher than the variances of all other principle component. So, this is true, if I 

have the variance of Y i equal to lambda i. 

The first principle component will have variance lambda 1 which is greater than lambda 

2 to lambda P, and so on. And another thing was whether these are uncorrelated we will 

see that covariance between Y i, and Y j will be 0 for all i not equal to j. 
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So, let us prove this result, we have made a strong statement that the linear combinations 

or the principle components are nothing but the linear combinations of x is in the in the 

way along with the ortho normal Eigen vectors simply of the dispersion matrix. 

So, for the proof of the result we start with let us consider variance of l prime X, I 

consider one linear combination of X, and I check its variance which is nothing but l 

transpose variance of X storing from the scratch, and this is nothing but l prime sigma l, 

and this I preferred to write by after using the spectral decomposition of the sigma 

matrix. So, I have P D lambda P transpose l. 

Now, I I have already said that so this sigma is given in terms of its spectral 

decomposition P D lambda P prime, I have already said that Eigen values of sigma are 

lambda 1 to lambda P, and e 1 to e P are the corresponding ortho normal Eigen vectors. 

So, I know the structure of D lambda, this is nothing but diagonal lambda 1 to lambda P, 

and the P matrix has e 1 to e P has its columns. So, P is an orthogonal matrix. Now, this 

is something like I can write for this l prime P D lambda P prime l, I can write it 

something as beta transpose d lambda beta, where beta is nothing, but P prime l right. 

And that is well, that is nothing but I have a beta vector, I have a diagonal matrix whose 

diagonal elements are lambda i’s, and then beta vector again, so that is nothing but 

summation of the type beta i square lambda i, i from 1 to p. 



Now, what I am required to do is to get. So, I have beta is P prime l. So, this also implies 

that l is nothing but if you consider l what you have to do is simply pre-multiply this with 

P transpose inverse that is possible, because P is an orthogonal matrix. And since P is 

orthogonal this is nothing but l is nothing but P beta. And P beta this relationship gives 

me a very important thing that l transpose l equal to 1 implies that you have beta 

transpose P transpose P, and then again beta is equal to 1, and that implies beta transpose 

beta is also equal to 1. 

So, l transpose 1 equal to 1 is equivalent to saying beta transpose beta is also equal to 1. 

So, that now that I have to maximize variance of l transpose X over l, such that l 

transpose l is equal to 1. So, this can be said that equivalently I can maximize this 

expression, which I have I have shown to be equal to the variance, I have to maximize 

summation beta i square lambda i over beta such that well - such that beta transpose beta 

is equal to 1. And terms of summation I can write this as such that beta i square is equal 

to 1. 

Now, I have summation beta i square that is that is the variance of l prime x. So, I can if I 

can obtain and upper bound of this expression subject to the condition that summation 

beta i square equal to 1 that I am true. 

So, I am trying to looking into its, so I have I have summation beta I square lambda I 

sum from i from 1 to P, this has to be less than or equal to if I replace all the Eigen 

values with the maximum Eigen value. So, I am writing lambda 1 for all lambda i’s, and 

hence I get this less than equal to sign, and then this summation beta i square remains 

there right. So, I have and then then when I have this is equal to lambda under the 

condition, since summation beta i square is equal to 1. So, I have achieved that 

maximum of variance l prime X maximum over l, such that l prime l is equal to 1 is 

nothing but lambda 1, because I have shown that this variance of l prime X is nothing but 

this summation beta i square lambda i, and the condition is nothing but summation beta i 

square equal to 1. 

And then I have seen I have I have shown that I can obtain an upper bound of this term, 

and it is it is nothing but the maximum Eigen value lambda 1. So, this has been shown 

that variance of l 1 prime X under the conditional prime l equal to 1 maximum of that is 

equal to lambda 1. 
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Now, I consider variance of Y 1, and Y 1 the one that is given to me that is variance of e 

1 prime X; Y 1 is said to be equal to this linear combination, and this is equal to e 1 

prime sigma e 1, and this is again by using the spectral decomposition of sigma this is P 

d lambda P prime e 1 right. 

Again I can handle this, I have write this e 1 prime for the P matrix I am writing e 1, e 2 

to e P, and then I have the diagonal matrix d lambda, I am writing P transpose matrix e 1 

transpose to e P transpose, and then e 1 again. If this is so by the fact that this e i’s are 

ortho normal, I will have this the this operation here combining this vector, and this 

matrix is going to give me the vector 1, and then followed by 0. And here, I have the 

diagonal matrix, and similarly I have the vector this one here. 

So, this is nothing but lambda 1, because the first diagonal element of D lambda is 

lambda 1, and only this is coming into the picture with one has the members here. So, 

that is essentially 1 times re-lambda, and that is lambda 1 which is equal to maximum of 

variance lambda sorry l prime X maximum over l, such that l prime l equal to 1. This is 

actually equal to this maximum variance which we have seen just now. 

So, I have Y 1 equal to e 1 prime X is the first PC, because as far as the first PC is 

concerned concerned, I will have to check only one thing that its its variance is having 

the maximum variance, and if its variance is lambda 1, and it is greater than all other 

lambda Eigen values, and it is actually equal to maximum of variance l prime X the 



maximum over this this of this choice of l with only this condition in place l prime l 

equal to 1. Well I have achieved to the the whatever criterion - the single criterion that 

was required for my first principle component, and I have Y 1 is e 1 prime X is the first 

principle component. Then I go to the next one that is construction of the second 

principle component.  
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And next we consider the second principle component. So, next we consider Y 2, linear 

combination - another linear combination of the original variables X 1 to X P, such that 

Y2. Now, here we have to remember 2 things. Firstly, that Y 2 is uncorrelated with Y 1, 

this factor did not come when you are considering the first principle component. And 

secondly, the variance of Y 2 has to be less than variance of Y 1, these two a properties 

have to be satisfied in the construction, such that Y 2 is uncorrelated with Y 1, this is 

number 1, and so that is what we are getting is that implies that covariance of Y 1, and Y 

2 this has to be equal to 0.  

So, we are considering covariance between l prime X, and now we know what is Y 1. So, 

I take that form of Y 1, e 1 prime X, and if you see that this is nothing but its its nothing 

but you have l prime X minus its expectations. So, this is something, we we are 

introducing here, we are assuming that the mean vector is of X is mu. So, that is there. 

And then I have e 1 prime X minus e 1 prime mu, this expectation is nothing but l prime 

sigma e 1, this is equal to 0. So, this is giving me l prime sigma e 1, this is nothing but l 



prime, and I consider another alternative form of this spectral decomposition of sigma. 

We know that this sigma which is P D lambda P prime can also be written in the 

summation form that with lambda i the scalars, and then the vectors coming into the 

picture it is not P i’s, but e i’s we are denoting them by e i’s. So, this is lambda i e i e i 

prime sum from 1 to P. 

So, we use this form here for sigma this form of the spectral decomposition, this is the 

summation lambda i e i e i prime I from 1 to P, and then you have 1. So, this factors 

leading leading me to this covariance being equal to 0, because this is nothing but you 

have lambda one and only coming out, and l prime is combining with e 1, and this is 

equal to 0 implies that that l is orthogonal to e 1. So, covariance of this equal to 0 is 

leading me to the fact that this l has to be constructed in such a way such that this is 

orthogonal to the vector which is coming in the first principle component that is e 1.  
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And then we have to consider the maximum of variance l prime X maximum over l, such 

that now we have as we have two properties of Y 2 to satisfy. So, similarly we have 2 

conditions - two types of conditions on l. One is there already which we know that l 

transpose l has to be equal to 1, and the other one is something which we have seen just 

now that l has to be orthogonal to e1. So, these two conditions have to be simultaneously 

satisfied, and then we have to get the maximum variance of l prime x. So, how is this 

done? We have variance of l prime X, this is nothing but l prime sigma l, and let us use 



the usual form of spectral decomposition we have e 1 to e P, this is how I am writing the 

matrix P. Then I have D lambda, and then P transpose e 1 transpose to e P transpose with 

l in the end; this is l transpose. 

So, this is giving me this is giving me l transpose, we have earlier seen that l transpose P 

d lambda e prime l is something like b transpose d lambda b, which is sum 0 to b 2 to b 

P, we have in place because all I have the condition that I have is l prime is orthogonal to 

e 1, and not so with other e e vectors. So, I have 0 to b b 2 to b P and then D lambda, and 

then I have the null vector the the vector, this b 2 transpose to b P transpose right. 

So, this is sorry, these are these are essentially scalars. So, we are talking about the 

elements of the v vector. So, these of we have here, these are this is fine, and this is the 

elements of the b matrix. So, I have 0 to b 2 from b 2 to b P right. So, this is like a sum 

summation b i square with lambda i from 2 to P right. 

So, for all now this is; obviously, for all l which is orthogonal to e 1, we have use this 

factor and how is this coming moreover we have we have certain order things to be 

followed we have b is nothing but if you see that b has been replace for P prime l. So, 

that l is l is nothing but P b, and l prime l equals 1 implies that you have b transpose P 

transpose P b which is equal to b transpose b, this is equal to 1. So, (( )) the whole 

conditions structure can be reduce to this fact that I have to maximize variance of l prime 

X subject to that l is orthogonal to e 1, and l transpose l is equal to 1.  

Now, with l orthogonal to e 1, I have seen and I just saw that this variance l prime, X is 

nothing but equal to summation b i square lambda i. Now, again I have to consider its 

maximum with the fact that beta prime b b prime b is equal to 1, because one condition I 

have already incorporated while I got the form this summation b i square is lambda i. I 

have already incorporated the condition that l is orthogonal to e 1, I have got yet one 

more condition to be satisfied that is b transpose b is equal to 1. So, I have to consider 

the maximum of this expression summation b i square lambda i, such that summation b i 

square is equal to 1. 

So, this implies that I have maximum of variance l prime X maximum over l, such that l 

is orthogonal to e 1 let us write this first, because this condition has been taken care of in 

the in the first place, and then I have l prime l is equal to 1 is nothing but maximum of 



summation b i square lambda i; i from 2 to b summation over maximum over b such that 

sum of b i square, i from 2 to P is equal to 1 right. 

So, this can be achieved, if again I replace the lambda i’s by they are maximum value, 

now here the lambda i’s are form 2 to P. So, the maximum value of this lambda 2 to 

lambda P is nothing but lambda 2, and then I have this as. So, this here I can replace this 

equality by less than or equal to, and this by summation b i square 2 to P, and this is 

equal to lambda 2. 

So, I have seen that, if I consider this second principle component its variance is lambda 

2 which is less than lambda 1. So, its variance is actually less than variance of Y 1, not 

only that this covariance of Y 1 and Y 2 consider in this way is also equal to 0. So, I have 

successfully constructed the second principle component; therefore, I can write it here 

just one line, this implies that Y 2 equals to e 2 X is the second before that let us let let us 

just check the variance of e 2 X, just the way we have done in the case of the first 

principle component, and then only we can comment on that. 
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Now, next variance of Y 2 which is variance of e 2 X right, this is nothing but e 2 

transpose sigma e 2, and this is e 2 transpose you have the P matrix, we are using the 

same form P D lambda P prime just spectral decomposition. So, we have e 1 to e P, then 

D lambda, then we have e 1 transpose to e P transpose l 2 sorry it is not l, but e 2 right, 

and this is nothing but because e 2 is ortho normal to all the in the e 1 to e P are all ortho 



normal Eigen vectors. You you will have e 2 combining with e 2 only, and since these 

are othho normal you get one here, so this is basically 0, 1, 0; then you have D lambda, 

and then again 0, 1, 0 to 0 which gives you lambda 2. So, all these in sum up to the 

conclusion that this implies Y 2 is e 2 prime X is the second principle component. 
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So, in this way we can go up to the k plus 1 (( )) one say likewise after the k th principle 

component, the k plus 1 th principle component. So, after going to the first, the second, 

and then we go to the third principle component is for the k plus 1 th principle 

component. We must have maximum of variance of l prime, X l is now orthogonal to e 1 

to e 2, all these e k’s right, k plus 1 is less than all 1 2 to e k plus 1 less than 1 2 to k. 

So, l has to be orthogonal to each of these, and of course the original condition that l 

transpose l is equal to 1. And this will be nothing but maximum of l with e 1 to e k, and 

then you have e k plus 1 to e P, then D lambda transpose of these e 1 to e k e k plus 1 to e 

P, and then you have l right. 

So, this is going to give you. So, I have you have variance of l prime X is now going to 

be 0 for k times, and then you have l prime e k plus 1, and then up to l prime e P, l is not 

orthogonal with these, then you have D lambda. And similarly, you have this 0, and then 

again you have l prime e k plus 1 up to l prime e P right. 



So, this variance is nothing but this implies that you have a situation, where this you can 

define some vector to let us call this as some C vector. So, we have C transpose D 

lambda C, this is equal to C i square lambda i, now i is going from k plus 1 to P now. 

And this obviously, has to be less than equal to lambda k plus 1. 

Now, note that while we are writing this we are considering the fact that for for l for 

every l orthogonal to e 1 to e k, and as well as l transpose l is equal to 1. After 

considering these 2 set of criteria we obtain this, and this gives us the maximum of 

variance of l prime X is maximum over l, such that l is orthogonal to e 1 to e k. And l 

prime l is equal to 1 this is nothing but lambda k plus 1; and lambda k plus 1 can again 

now shown to be equal to variance of e k plus 1 prime X. Giving us that Y k plus 1 is e k 

plus 1 prime X is the k plus 1 th principle component. 

We have talked about certain other properties of the principle components, if you recall 

the an important such property was the total variation of X is equal to total variation of 

Y. So, we will begin our next session by proving that result.  

 


