
Introduction to Fuzzy Sets Arithmetic and Logic 

Prof. Niladri Chatterjee 

Department of Mathematics 

Indian Institute of Mathematics – Delhi 

 

Lecture -16 

Fuzzy Sets Arithmetic and Logic 

 

Welcome students to the 16th lecture of the MOOCs course on Fuzzy Sets Arithmetic and 

Logic.  

In the last class we have studied the extension principle which allows us to extend the notion 

of a function from crisp sets to the domain of fuzzy sets.  
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Today in this class we shall look at Extension principle and Arithmetic with respect to fuzzy 

sets. 

Earlier we have done fuzzy arithmetic and if you remember we have used 𝛼-cuts sfor fuzzy 

arithmetic namely +    −   ∗  /  

If you remember we have done them, we have used interval arithmetic on  𝛼𝐴 and  𝛼𝐵 and we 

have used that  
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 𝛼(𝐴 ∘ 𝐵) =  𝛼𝐴 ∘  𝛼𝐵, where ∘ stands for any of the operators +  −   ∗   / 

But, we are not sure that actually the set obtained by arithmetic operations yield continuous 

fuzzy numbers. 

We have sort of assumed that result, when we are operating between two alpha cuts and that 

will indeed generate the 𝛼-cut of the final result. 
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So the following theorem establishes that fact where we have used Extension Principle. 

Theorem: 

Let ∘ be one of {+, −, ∗, /} and 𝐴 and 𝐵 are continuous fuzzy numbers.  

Then 𝐴 ∘ 𝐵 is a continuous fuzzy number that is for all 𝛼 ∈ (0, 1],  𝛼(𝐴 ∘ 𝐵) is a closed interval 

and 𝐴 ∘ 𝐵 is continuous. 

 



If we show that, then we justify why you have used the interval operations on different 𝛼-cuts 

to get the final result. 
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So let me illustrate how we define the operations +, −,   ∗,   / using extension principle,  

𝜇𝐴+𝐵(𝑧) = sup
x∈A y∈B|x+y=z

{min(𝜇𝐴(𝑥), 𝜇𝐵(𝑦)) } 

𝜇𝐴−𝐵(𝑧) = sup
x∈A y∈B|x−y=z

{min(𝜇𝐴(𝑥), 𝜇𝐵(𝑦)) } 

𝜇𝐴∗𝐵(𝑧) = sup
x∈A y∈B|x∗y=z

{min(𝜇𝐴(𝑥), 𝜇𝐵(𝑦)) } 
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And similarly  

𝜇𝐴/𝐵(𝑧) = sup
x∈A y∈B|x/y=z

{min(𝜇𝐴(𝑥), 𝜇𝐵(𝑦)) } 



Before going further here is an illustration:  

Let 𝐴 = [−1   1   3]  and 𝐵 = [1    3    5]  

Therefore,  𝛼𝐴 = [−1 + 2𝛼, 3 − 2𝛼] and  𝛼𝐵 = [1 + 2𝛼, 5 − 2𝛼] 
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Therefore, by interval operation  

 𝛼(𝐴 + 𝐵) = [4𝛼, 8 − 4𝛼] 

We have already seen that 𝐴 + 𝐵 = [0   4   8]  

Therefore, 𝜇𝐴+𝐵(𝑧) = {

0     𝑧 < 0 or 𝑧 > 8
𝑧

4
              0 ≤ 𝑧 ≤ 4

8−𝑧

4
          4 ≤ 𝑧 ≤ 8

 

 

So , when 𝑧 = 8 it is 0 when 𝑧 = 4 it is 1. 

Therefore, 𝜇𝐴+𝐵(2) =
2

4
=

1

2
  

Now we need to check by using the formula whether we can get a 𝜇(2) =
1

2
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So let us do that.  

Note that there are infinitely many combinations that make 𝑥 + 𝑦 = 2 

Let us look at in how many ways we can get 𝐴 + 𝐵 = 2 

When 

𝑥 = −1 ; 𝑦 = 3,   

𝑥 = 1 ; 𝑦 = 1,    

𝑥 = 0 ; 𝑦 = 2 

So let us see intuitively what is happening?  

𝜇𝐴(−1) = 0,    𝜇𝐵(3) = 1   ∴ 𝑚𝑖𝑛 = 0 

𝜇𝐴(1) = 1,       𝜇𝐵(1) = 0   ∴ 𝑚𝑖𝑛 = 0 

 

Now let us move suppose I increase the value of 𝑥 from −1  

Therefore, the value of 𝐵 has to be appropriately reduced from 3 and possibility that these two 

when add up will give me 2. Similarly, as we go up and as we go down with this line, We find 

that at this point both of them attain the value half. 

Therefore, what is this point this is 0 and what is this point it is 2? 

Therefore, 𝜇𝐴(0) =
1

2
,   𝜇𝐵(2) =

1

2
   

and if we go above this will fall below half and if we take a point above this then here the 𝜇 

falls below half so in all the cases the 𝜇 half will be less than half but when 𝑥 = 0 and 𝑦 = 2, 

the minimum is half therefore we can see the maximum possible value. 
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Or say therefore sup
x∈A,y∈B|x+y=2

{min(𝜇𝐴(𝑥), 𝜇𝐵(𝑦))}  = min (
1

2
,

1

2
) =

1

2
  

and in any case we have already seen this result sometime earlier but here we show that with 

the help of extension principle we obtain the same value.  

I request you to try for other values in a similar way.  

Okay, so with that background now, let me prove the theorem.  

(Refer Slide Time: 19:50) 

 

We want to prove that 𝐴 ∘ 𝐵 is a continuous fuzzy number that means  

i.  𝛼(𝐴 ∘ 𝐵) is a closed interval ∀ 𝛼 

ii. 𝐴 ∘ 𝐵 is continuous 
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So let us first prove that  𝛼(𝐴 ∘ 𝐵) is closed interval ∀𝛼 ∈ (0, 1]  

For that we show that  𝛼𝐴 ∘  𝛼𝐵 =  𝛼(𝐴 ∘ 𝐵)  

Therefore, since  𝛼𝐴 and  𝛼𝐵 are closed intervals therefore,  𝛼(𝐴 ∘ 𝐵) will also be a closed 

interval and why do we say that these are closed interval?  

Because it is already given that they are fuzzy numbers and we were doing interval arithmetic 

on that and we want to show that this is also going to be a closed interval. 
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So let 𝑧 ∈  𝛼𝐴 ∘  𝛼𝐵  

⇒ ∃ 𝑥0 ∈  𝛼𝐴 and 𝑦0 ∈  𝛼𝐵 such that 𝑥0 ∘ 𝑦0 = 𝑧 

∴ 𝜇𝐴∘𝐵(𝑧) = sup
x∈A,y∈B|x∘y=z

{min(𝜇𝐴(𝑥), 𝜇𝐵(𝑦))} ≥ min{𝜇𝐴(𝑥0) , 𝜇𝐵(𝑦0)} 



And we know that both of them have membership value ≥ 𝛼 because they belong to their 

respective 𝛼-cuts therefore minimum has to be ≥ 𝛼  

∴ 𝜇𝐴∘𝐵(𝑧) ≥ 𝛼 ⇒ 𝑧 ∈  𝛼(𝐴 ∘ 𝐵) 

Therefore, we started with 𝑧 ∈  𝛼𝐴 ∘  𝛼𝐵 and we find that 𝑧 ∈  𝛼(𝐴 ∘ 𝐵).  

Therefore, we say that  𝛼𝐴 ∘  𝛼𝐵 ⊆  𝛼(𝐴 ∘ 𝐵), so this is one way of the proof.  
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Now we want to prove that if 𝑧 ∈  𝛼(𝐴 ∘ 𝐵) then 𝑧 ∈  𝛼𝐴 ∘  𝛼𝐵  

This proof is slightly tricky; mathematically and it needs some knowledge of analysis, so try 

to understand it carefully. 

Since 𝑧 ∈  𝛼(𝐴 ∘ 𝐵) 

⇒ sup
x∈A,y∈B|x∘y=z

{min(𝜇𝐴(𝑥), 𝜇𝐵(𝑦))} ≥ 𝛼  
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That means that if we consider any 𝛼′ < 𝛼 then we will get 𝑥′ and 𝑦′ such that 𝑥′ ∘ 𝑦′ = 𝑧 and 

min{𝜇𝐴(𝑥′), 𝜇𝐵(𝑦′)} > 𝛼′ because if we do not get such 𝑥′  and 𝑦′ then obviously the 

supremum of the minimum cannot be 𝛼 > 𝛼′  

Therefore the moment we choose any 𝛼′ < 𝛼, we will get 𝑥′, 𝑦′which will produce the same 𝑧 

under the operation but, the minimum of this has to be greater than 𝛼′. 

Therefore, given any 𝛼 > 0, we choose a sequence of such 𝛼′ such that 𝛼′ converges to 𝛼 and 

for each such 𝛼′ we identify 𝑥′,  𝑦′  such that 𝑥′ ∘ 𝑦′ = 𝛼  
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How do you do that?  

We do in the following way:  

Given 𝛼 we define 𝑁 = ⌊
1

𝛼
⌋ + 1 where, ⌊

1

𝛼
⌋ = the highest integer that is less than 

1

𝛼
 



Now we construct {𝛼𝑛
′ } as follows: 

𝛼𝑛
′ = 𝛼 −

1

𝑛
  where 𝑛 ≥ 𝑁 

Therefore, as explained above we shall get a sequence {𝑥𝑛, 𝑦𝑛} 𝑛 → ∞ such that 𝑥𝑛 ∘ 𝑦𝑛 = 𝑧  
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Since all 𝛼-cuts are closed intervals  

Therefore, both {𝑥𝑛} and {𝑦𝑛} sequences are bounded sequence because we are taking numbers 

from within the 𝛼-cut and since these are infinite sequence therefore, both {𝑥𝑛} and {𝑦𝑛} will 

have at least one point of convergence. 

Say 𝑥0 is a point of convergence of {𝑥𝑛}.  

What does it mean?  

It implies that there exists infinitely many 𝑥𝑖′𝑠 such that |𝑥0 − 𝑥𝑖| < 𝜖 for any 𝜖 > 0. 
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Let {𝑥𝑛𝑖
} be the subsequence of 𝑥𝑛 such that 𝑥𝑛𝑖

→ 𝑥0.  

Now let us look at the corresponding subsequence namely {𝑦𝑛𝑖
} of {𝑦𝑛}. 

So first we have chosen a subsequence which is converging to 𝑥0 then we are only looking at 

those indices of that subsequence and we are looking at corresponding 𝑦 values. 

since {𝑦𝑛𝑖
} is also a bounded sequence it has a point of convergence 𝑦0.  
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And let {𝑦𝑛𝑖𝑗
} be the subsequence of {𝑦𝑛𝑖

} such that 𝑦𝑛𝑖𝑗
→ 𝑦0 as 𝑗 → ∞.  

Now let us focus on {𝑥𝑛𝑖𝑗
} and {𝑦𝑛𝑖𝑗

} and therefore, 𝑥𝑛𝑖𝑗
→ 𝑥0 and  𝑦𝑛𝑖𝑗

→ 𝑦0  

and 𝑥𝑛𝑖𝑗
∘ 𝑦𝑛𝑖𝑗

= 𝑧 for all 𝑗.  
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Now since ∘ is a continuous function. 

𝑧 = lim
𝑗→∞

𝑥𝑛𝑖𝑗
∘  𝑦𝑛𝑖𝑗

 = lim
𝑗→∞

𝑥𝑛𝑖𝑗
∘  lim

𝑗→∞
 𝑦𝑛𝑖𝑗

 = 𝑥0 ∘ 𝑦0 

 Now 𝜇𝐴 (𝑥𝑛𝑖𝑗
 ) = 𝛼 −

1

𝑛𝑖𝑗

 and 𝜇𝐵 (𝑦𝑛𝑖𝑗
 ) = 𝛼 −

1

𝑛𝑖𝑗
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Therefore, 𝜇𝐴(𝑥0) = 𝜇𝐴 ( lim
𝑗→∞

𝑥𝑛𝑖𝑗
 ) = lim

𝑗→∞
𝜇𝐴 (𝑥𝑛𝑖𝑗

) = lim
𝑗→∞

𝛼 −
1

𝑛𝑖𝑗

 ≥ 𝛼 

Similarly, 𝜇𝐵(𝑦0) ≥ 𝛼 

Therefore, we find there exists 𝑥0 ∈  𝛼𝐴 and  𝑦0 ∈  𝛼𝐵 such that 𝑧 = 𝑥0 ∘ 𝑦0 

Therefore, 𝑧 ∈  𝛼𝐴 ∘  𝛼𝐵. 
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Therefore, we started with 𝑧 ∈  𝛼(𝐴 ∘ 𝐵) and we find that 𝑧 ∈  𝛼𝐴 ∘  𝛼𝐵  



∴  𝛼(𝐴 ∘ 𝐵) ⊆  𝛼𝐴 ∘  𝛼𝐵 

Earlier we have shown  𝛼𝐴 ∘  𝛼𝐵 ⊆  𝛼(𝐴 ∘ 𝐵) 

So together we proved that  𝛼𝐴 ∘  𝛼𝐵 =  𝛼(𝐴 ∘ 𝐵) 

 and therefore,  𝛼(𝐴 ∘ 𝐵),  is a closed interval. 

In our proof we did not choose any particular 𝛼 and therefore since it is true for all 𝛼 therefore 

 𝛼(𝐴 ∘ 𝐵) is a closed interval for all 𝛼. 
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Now what remains to be proved is that 𝐴 ∘  𝐵 is continuous.  

Suppose 𝐴 ∘  𝐵 is not continuous and let 𝑧0 be the point of discontinuity, now we know that for 

a fuzzy number the membership function 𝑙(𝑥) and 𝑟(𝑥) are right continuous and left continuous 

respectively.  

If you remember quite a few classes back when we were discussing the membership of a fuzzy 

number, we have these characteristics. 
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So let us look at the membership function.  

So suppose this is the 𝑙(𝑧) and suppose this is a point of discontinuity, therefore as we come 

from this side we will come close to this point but there is going to be a gap between them or 

a jump between them because this is a point of discontinuity.  

So, without loss of generality let 𝑧0 be on this left side; if it is on right side this is the same 

similar situation if it is a point of discontinuity we will get a very similar structure here. 

In either case, it will be the same so, when you proof for 𝑙(𝑧) it will also hold good on this side. 

 

Since 𝑙(𝑧) is right continuous we have lim
𝑧→𝑧0

−
𝜇𝐴∘𝐵(𝑧) < 𝜇𝐴∘𝐵(𝑧0)  as we can understand there is 

a gap therefore membership has to be strictly less than 𝜇𝐴∘𝐵(𝑧0) 

lim
𝑧→𝑧0

−
𝜇𝐴∘𝐵(𝑧) < 𝜇𝐴∘𝐵(𝑧0) = sup

𝑥∘𝑦=𝑧
min(𝜇𝐴(𝑥), 𝜇𝐵(𝑦))   

Let 𝑥0 and 𝑦0 be such that 𝑧0 = 𝑥0 ∘ 𝑦0  
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Therefore,  

lim
𝑧→𝑧0

−
𝜇𝐴∘𝐵(𝑧) <  min(𝜇𝐴(𝑥0), 𝜇𝐵(𝑦0))         − − − −(𝑎) 

So we establish one inequality let us call it (𝑎)  

Now let us consider a sequence {𝑧𝑛} such that 𝑧𝑛 < 𝑧0 for all 𝑛.  

Let{𝑥𝑛}  and {𝑦𝑛}  be sequences of 𝑥 and 𝑦 such that 𝑥𝑛 ∘ 𝑦𝑛 = 𝑧𝑛 and 𝑥𝑛 → 𝑥0 and 𝑦𝑛 → 𝑦0 
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Since the operations are continuous, therefore  

lim
𝑧→𝑧0

−
𝜇𝐴∘𝐵(𝑧) = lim

𝑧𝑛→𝑧0
−

𝜇𝐴∘𝐵(𝑧) = lim
𝑛→∞

𝜇𝐴∘𝐵(𝑧𝑛) 

= lim
𝑛→∞ 

sup
𝑥∘𝑦=𝑧𝑛

min(𝜇𝐴(𝑥), 𝜇𝐵(𝑦))   

≥ lim
𝑛→∞

min(𝜇𝐴(𝑥𝑛), 𝜇𝐵(𝑦𝑛))  
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= min ( lim
𝑛→∞

𝜇𝐴(𝑥𝑛) , lim
𝑛→∞

𝜇𝐵(𝑦𝑛)) 

= min( 𝜇𝐴(𝑥0), 𝜇𝐵(𝑦0))  

Therefore, we find that lim
𝑧→𝑧0

−
𝜇𝐴∘𝐵(𝑧) ≥ min( 𝜇𝐴(𝑥0), 𝜇𝐵(𝑦0))  

Earlier if you see we have shown that lim
𝑧→𝑧0

−
𝜇𝐴∘𝐵(𝑧) < min( 𝜇𝐴(𝑥0), 𝜇𝐵(𝑦0)) and now we have 

identified that inequality is reversed.  

Therefore, there is a contradiction.  

This contradiction came because we assume that there exists a point of discontinuity at 𝑧0. 

Therefore, what we prove that there cannot be any point of discontinuity in 𝐴 ∘ 𝐵, therefore, 

that is a continuous function.  

Since we have already found that all intervals are closed intervals and here we find that 𝐴 ∘ 𝐵 

is a continuous therefore, we conclude that 𝐴 ∘ 𝐵 is a continuous fuzzy number.  

And therefore that allows us to work on the  𝛼𝐴 and  𝛼𝐵 to generate the  𝛼(𝐴 ∘ 𝐵) where ∘ is 

any of addition subtraction multiplication and division.  

Okay friends, I stop here today. In the next class I shall do some more arithmetic particularly 

in solving certain fuzzy equations. Thank you. 

 


