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Welcome students to the MOOCs course on introduction to Fuzzy Set, Arithmetic and Logic.     

This is lecture number 15 as I said at the end of the last lecture, 
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That today what I will start is called extension principal proposed by none other than Professor 

Zadeh.  

This principle allows us to extend the concept of mapping from crisp sets to fuzzy sets.  To 

keep things simple we focus on fuzzy sets defined on intervals on ℝ that is the real line.  
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So, far we have seen mappings or functions from subsets of ℝ to ℝ,  

For example: Consider 𝑓(𝑥) = 𝑥2  

Let 𝐴 = [1, 3] and let 𝐵 = 𝑓(𝐴) 

𝑖. 𝑒. 𝐵 = {𝑦|𝑦 = 𝑓(𝑥), 𝑥 ∈ 𝐴}   
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Therefore, if 𝐴 = [1, 3] , 𝐵 = [1, 9]  

and given any 𝑦 ∈ 𝐵, we can find 𝑥 such that 𝑥 = 𝑓−1(𝑦) which in our case is√𝑦  

Now question is:  How to extend the above for fuzzy sets defined on ℝ? 
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Suppose 𝐴 is the triangular fuzzy number [1   2  3], then for each 𝑦 ∈ [1, 9], we need to 

compute its membership to B.  

In the above case we can do it very simply,  

𝜇𝐵(𝑦) = 𝜇𝐴(√𝑦) 

or in general 𝜇𝐵(𝑦) = 𝜇𝐴(𝑓−1(𝑦))  
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Therefore, 𝜇𝐵(2.25) = 𝜇𝐴(1.5) =
1

2
 when we have 𝐴 = [ 1  2  3] 

Similarly, 𝜇𝐵(4) = 𝜇𝐴(2) = 1  

However, problem comes if 𝑓 is many-to-one. 
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For example: Consider 𝐴 = [−2    0   3] and let 𝑓(𝑥) = 𝑥2 

Therefore, 𝑓(−1) = 𝑓(1) = 1 

Question: What is 𝜇𝐵(1)?  

Note that: 𝐵 = [0, 9] because if my input is from [−2    0   3] then the value of 𝑥2 will lie in 

the interval [0, 9]  

(Refer Slide Time: 09:53)  

 

We know that 𝜇𝐵(𝑦) = 𝜇𝐴(√𝑦) will not work easily in a straight forward way.  

Because 𝑓(−1) = 𝑓(1) = 1 and since we have the TFN [−2    0   3] 

𝜇𝐴(−1) =
1

2
 and 𝜇𝐴(1) =

2

3
  

therefore, what is going to be 𝜇𝐵(1)?  

It is 
1

2
  or 

2

3
 that is the question. 
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In general consider a function 𝑓 on ℝ as follows and  

Suppose we consider 𝑦 is like this.  

Therefore, we get at least 5 points 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 such that 𝑓(𝑥𝑖) = 𝑦 for all 𝑖 = 1, … 5  

And if 𝜇𝐴(𝑥𝑖) ≠ 𝜇𝐴(𝑥𝑗), 𝑖 ≠ 𝑗 ∈ {1, 2 … 5}  
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Then determining 𝜇𝐵(𝑦)is not straight forward.  

Another problem is: What is 𝑓−1(𝑦) where 𝑓(𝑥1) = 𝑓(𝑥2) = ⋯ = 𝑓(𝑥5) = 𝑦? 
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Thus we need policies for: 

1) determining 𝑓−1(𝑦) 

2) determining 𝜇𝐵(𝑦)  

And both of them will need to consider  

• All 𝑥1, 𝑥2 …. such that 𝑓(𝑥𝑖) = 𝑦 

• 𝜇𝐴(𝑥𝑖)    ∀  𝑖   
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To take care of such multiple values we extend the domain and range of 𝑓: 𝑋 → 𝑌 to 𝑃(𝑋) and 

𝑃(𝑌) where 𝑃 denotes the power set.  

To illustrate:  

Let us take a discrete set 𝑋 = {−2, −1, 0, 1, 2, 3}  

Therefore, 𝑃(𝑋) consists of all possible subsets of 𝑋 
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In particular, let 𝐴 ∈ 𝑃(𝑋) 

i. 𝐴 = {−2, 1, 0} then 𝑓(𝐴) = {4, 1, 0} 

ii. 𝐴 = {−2, 2, −1,   1} then 𝑓(𝐴) = {4, 1} 

iii. 𝐴 = {−1, 0, 1, 3} then 𝑓(𝐴) = {0, 1, 9} 

Thus we get from a subset 𝐴 of 𝑋, a subset 𝐵 of 𝑌 = {0, 1, 4, 9} such that for all 𝑦 ∈ 𝐵 there 

exists 𝑥 ∈ 𝐴 such that 𝑓(𝑥) = 𝑦 
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Thus 𝑓(𝐴) = {𝑦| ∃ 𝑥 ∈ 𝐴 such that 𝑓(𝑥) = 𝑦} and we can compute 𝑓−1 in the following way:  

𝑓−1(𝐵) = {𝑥|𝑓(𝑥) = 𝐵}  

Therefore, 𝑓−1(1) = {−1, 1} 

 𝑓−1(0) = {0} 



 𝑓−1({1, 4, 9}) = {−1, 1, −2, 2, 3}  
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The next problem is assignment of fuzzy membership in the event of 𝐴 is a fuzzy set defined 

on ℝ.  

Consider for example:  

𝐴 = {
0

−2
+

1/2 

−1
+

1

0
+

2/3 

1
+

1/3

2
+

0

3
} 

Question is how to obtain 𝜇𝐵(𝑦)?  
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The formula is: 

𝜇𝐵(𝑦) = max
x

{𝜇𝐴(𝑥)|𝑓(𝑥) = 𝑦}  

 ∴ 𝜇𝐵(1) = max{𝜇𝐴(1), 𝜇𝐴(−1)} = max {
2

3
,

1

2
} =

2

3
 



and 𝜇𝐵(4) = max{𝜇𝐴(2), 𝜇𝐴(−2)} = max {
1

3
, 0} =

1

3
 

In this way we can compute 𝜇𝐵(𝑦). How to compute 𝑓−1 ? 
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Therefore, 𝜇𝑓−1(𝐵)(𝑥) = 𝜇𝐵(𝑓(𝑥))  

Thus, with respect to the above case: 

 𝜇𝑓−1(𝐵)(1) = 𝜇𝐵(1) = max{𝜇𝐴(1), 𝜇𝐴(−1)} =
2

3
 

In a similar way 

𝜇𝑓−1(𝐵)(2) =
1

3
 and 𝜇𝑓−1(𝐵)(−2) =

1

3
  

(Refer Slide Time: 28:01) 

 

This is because 𝜇𝑓−1(𝐵)(𝑥) = 𝜇𝐵(𝑓(𝑥)) 



And therefore, 𝜇𝑓−1(𝐵)(2) = 𝜇𝐵(22) = 𝜇𝐵(4) = max{𝜇𝐴(2), 𝜇𝐴(−2)} = max {
1

3
, 0} =

1

3
  

In a similar way 𝜇𝑓−1(𝐵)(−2) = 𝜇𝐵(4) =
1

3
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This allows us to fuzzify a function on crisp sets to a function on fuzzy sets and this gives us 

Extension Principle, 
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Which says that  

Any given function 𝑓: 𝑋 → 𝑌 induces two functions:  

• 𝑓: 𝔉(𝑋) → 𝔉(𝑌) 

• 𝑓−1: 𝔉(𝑌) → 𝔉(𝑋) 

where 𝔉(𝑋) and 𝔉(𝑌) are set of all possible fuzzy sets on 𝑋  and 𝑌.  
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Question is: what happens if the number of  𝑥 which produce the same 𝑦 is infinite.  
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For example:  

Consider 𝑓(𝑥) = ⌊𝑥⌋ where ⌊∘⌋  denotes the largest integer ≤ 𝑥 

Therefore, let 𝐴 = [0, 5] 

𝐵 = {0, 1, 2, 3, 4, 5}  

Then say all 𝑥 ∈ [0, 1) will produce the same 𝑦 i.e. 0  

Similarly, all 𝑥 ∈ [2, 3) will produce 𝑓(𝑥) = 2. 
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Question is: in such cases how to compute 𝜇𝐵(𝑦)? 

And the formula is: 

𝜇𝐵(𝑦) = sup
𝑥∈𝐴|𝑓(𝑥)=𝑦

𝜇𝐴(𝑥)  

∴ 𝜇𝐵(0) = sup
𝑥∈[0,1)

𝜇𝐴(𝑥)  

Thus, the notion of maximum is now replaced with  supremum , as there are infinite number 

of values which produces the same 𝑦 

We may not be able to identify the maximum therefore, we need to replace it with  supremum. 
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Thus the extension principle 

𝜇𝑓(𝐴)(𝑦) = sup
𝑥∈𝐴|𝑓(𝑥)=𝑦

𝜇𝐴(𝑥) 

And  



𝜇𝑓−1(𝐵)(𝑥) = 𝜇𝐵(𝑓(𝑥)) 
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Let me now give you some simple results:  

1) 𝑓(𝐴) = 𝜙 ⟺ 𝐴 = 𝜙 

2) 𝐴1 ⊆ 𝐴2 ⇒ 𝑓(𝐴1) ⊆ 𝑓(𝐴2)  

3) 𝑓(∪𝑖 𝐴𝑖) =∪𝑖 𝑓(𝐴𝑖) 

4) 𝑓(∩𝑖 𝐴𝑖) ⊆  ∩𝑖 𝑓(𝐴𝑖) 

5) 𝐵1 ⊆ 𝐵2 ⇒  𝑓−1(𝐵1) ⊆ 𝑓−1(𝐵2) 
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6) 𝑓−1(∪𝑖 𝐵𝑖) =∪𝑖 𝑓−1(𝐵𝑖) 

7) 𝑓−1(∩𝑖 𝐵𝑖) =∩𝑖 𝑓−1(𝐵𝑖) 



8) 𝐴 ⊆ 𝑓−1(𝑓(𝐴))  

9) 𝐵 ⊇ 𝑓(𝑓−1(𝐵)) 

I leave these an exercise, these are already straight forward.  

If you are understood how we are calculating the membership functions and how we are 

calculating the inverse, all these are absolutely straight forward to prove.  
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So before I stop I give you an important result, which show that extension principle, is strong 

cut-worthy but not simply cut-worthy.  
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So let 𝑓: 𝑋 → 𝑌 be an arbitrary crisp function. Then for any 𝐴 ∈ 𝔉(𝑋) that is 𝐴 is a fuzzy set 

define over 𝑋 and for all 𝛼 ∈ [0, 1] the following properties of 𝑓 fuzzified by the extension 

principle holds.  



That means we have taken function 𝑓 from 𝑋 to 𝑌 we have fuzzified them using extension 

principle then we find the following two properties to hold.  

What are these?  

1)  𝛼+(𝑓(𝐴)) = 𝑓( 𝛼+𝐴)  

2)  𝛼(𝑓(𝐴)) ⊇ 𝑓( 𝛼𝐴)  

So this says that we  𝛼+(𝑓(𝐴)) through  𝛼+𝐴 and apply 𝑓 on them and therefore it is strong cut 

worthy but this containment relationships says that it is not simply cut worthy. 
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Proof:  𝛼+(𝑓(𝐴)) = 𝑓( 𝛼+𝐴) 

Let us consider 𝑦 ∈  𝛼+(𝑓(𝐴))  

⇒ 𝜇𝑓(𝐴)(𝑦) > 𝛼  

⇒ sup
𝑥|𝑓(𝑥)=𝑦

𝜇𝐴(𝑥) > 𝛼  

⇒ ∃ 𝑥0  such that 𝑓(𝑥0) = 𝑦 and 𝜇𝐴(𝑥0) > 𝛼  

⇒ ∃ 𝑥0  such that 𝑓(𝑥0) = 𝑦 and 𝑥0 ∈  𝛼+𝐴  

⇒ 𝑦 ∈ 𝑓( 𝛼+𝐴)   
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This shows  𝛼+(𝑓(𝐴)) ⊆ 𝑓( 𝛼+𝐴)  

Conversely, suppose 𝑦 ∈ 𝑓( 𝛼+𝐴) 

⇒ ∃ 𝑥0  such that 𝑓(𝑥0) = 𝑦 and 𝑥0 ∈  𝛼+𝐴  

⇒ ∃ 𝑥0  such that 𝑓(𝑥0) = 𝑦 and 𝜇𝐴(𝑥0) > 𝛼  

⇒ sup
𝑥|𝑓(𝑥)=𝑦

𝜇𝐴(𝑥) > 𝛼  

⇒ 𝜇𝑓(𝐴)(𝑦) > 𝛼  

⇒ 𝑦 ∈  𝛼+(𝑓(𝐴))  

So this proves the first result.  
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Now let us prove the second result  

 𝛼(𝑓(𝐴)) ⊇ 𝑓( 𝛼𝐴)   



If 𝑦 ∈ 𝑓( 𝛼𝐴)  

⇒ ∃ 𝑥0 ∈  𝛼𝐴 such that 𝑓(𝑥0) = 𝑦 

∴ 𝜇𝑓(𝐴)(𝑦) = sup
x

𝜇𝐴(𝑥) ≥ 𝜇𝐴(𝑥0) ≥ 𝛼       ∵ 𝑥0 ∈  𝛼𝐴  

This shows 𝑓( 𝛼𝐴) ⊆  𝛼(𝑓(𝐴)) 
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But there may be situation when 𝑦 ∈  𝛼(𝑓(𝐴)) ⇏ 𝑦 ∈ 𝑓( 𝛼𝐴)  

 Consider for example  

𝑓(𝑛) = {
10    2 ≤ 𝑛 ≤ 100
20            𝑛 > 100

 

 

and 𝜇𝐴(𝑛) = 1 −
1

𝑛
    ∀𝑛 ≥ 2 

Therefore 𝜇𝑓(𝐴)(10) = max
i=2,…100

1 −
1

𝑛
=

99

100
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And 𝜇𝑓(𝐴)(20) = sup
n>100

𝜇𝐴(𝑥) = sup
n>100

(1 −
1

𝑛
) = 1 

Therefore,  1(𝑓(𝐴)) = {20} 

But 𝑓( 1𝐴) = 𝜙, since there does not exist any 𝑛 in 𝐴 such that 𝜇𝐴(𝑛) = 1 

Because for all of them it is going to be 1 −
1

𝑛
 so, it will never get the value 1  

therefore,  1𝐴 = 𝜙 and therefore 𝑓( 1𝐴) = 𝜙 

 

On the other hand because the  supremum  is 1,  1(𝑓(𝐴)) = {20}. This proves the result.  

Ok students I stop here now I hope you understand the extension principle in the next class I 

shall work on how extension principal can be used for doing fuzzy arithmetic, thank you. 

 


