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Welcome students to the lecture number 13 for the MOOCs on Fuzzy Sets, Arithmetic and 

logic.  
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In today’s lecture, we shall study some additional properties of alpha cuts, if you remember we 

have already seen some properties, say for example: 

i.  𝛼+𝐴 ⊆  𝛼𝐴   ∀𝛼 for a fuzzy set 𝐴 defined on some universal set 𝑋.  

ii. If 𝛼 < 𝛽 then,  𝛽𝐴 ⊆  𝛼𝐴 
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Today we examine some more properties of alpha cuts so, let me first state four results: 

Theorem: 

Let 𝐴 and 𝐵 be two fuzzy sets defined over a universal set 𝑋. Then for all 𝛼 ∈ [0, 1] 

(a) 𝐴 ⊆ 𝐵 iff  𝛼𝐴 ⊆  𝛼𝐵    ∀𝛼 

(b) 𝐴 ⊆ 𝐵 iff  𝛼+𝐴 ⊆  𝛼+𝐵    ∀𝛼 

(c) 𝐴 = 𝐵 iff  𝛼𝐴 =  𝛼𝐵    ∀𝛼 

(d) 𝐴 = 𝐵 iff  𝛼+𝐴 =  𝛼+𝐵    ∀𝛼 
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So, let me prove this results: 

(a) 𝐴 ⊆ 𝐵 iff  𝛼𝐴 ⊆  𝛼𝐵    ∀𝛼  

Proof: What do you mean by 𝐴 ⊆ 𝐵? 

Since 𝐴 ⊆ 𝐵 we have 𝜇𝐴(𝑥) ≤ 𝜇𝐵(𝑥) for all 𝑥 ∈ 𝑋 



Now, suppose 𝐴 ⊆ 𝐵 , we need to show that  𝛼𝐴 ⊆  𝛼𝐵 for all 𝛼 ∈ [0, 1]    
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Suppose, if possible  𝛼𝐴 ⊈  𝛼𝐵     

⇒   ∃ 𝑥 such that 𝑥 ∈  𝛼𝐴 but 𝑥 ∉  𝛼𝐵  

⇒ 𝜇𝐴(𝑥) ≥ 𝛼 but 𝜇𝐵(𝑥) < 𝛼 

Contradicts that 𝜇𝐴(𝑥) ≤ 𝜇𝐵(𝑥) for all 𝑥 

So, this is very obvious from this side that if 𝐴 ⊆ 𝐵 then  𝛼𝐴 ⊆  𝛼𝐵     
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Conversely, suppose  𝛼𝐴 ⊆  𝛼𝐵     

We need to show that for all 𝑥 ∈ 𝑋, 𝜇𝐴(𝑥) ≤ 𝜇𝐵(𝑥) 

Suppose, if possible there exist 𝑥0 such that 𝜇𝐴(𝑥0) > 𝜇𝐵(𝑥0). 

Let 𝜇𝐴(𝑥0) be 𝛼  and 𝜇𝐵(𝑥0) be 𝛽  
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Therefore, by assumption 𝛼 > 𝛽 since, we have a 𝜇𝐴(𝑥0) > 𝜇𝐵(𝑥0) 

Therefore, 𝑥0 ∈  𝛼𝐴 but, since 𝜇𝐵(𝑥0) = 𝛽 < 𝛼 

Therefore, 𝑥0 ∉  𝛼𝐵  

Therefore, contradicts that  𝛼𝐴 ⊆  𝛼𝐵  and this contradiction arises because of the assumption 

that there exists such an 𝑥0.   

Therefore, we can see that 𝜇𝐴(𝑥) ≤ 𝜇𝐵(𝑥), for all 𝑥  

⇒ 𝐴 ⊆ 𝐵  

 Proved.  
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Now, let us prove  

(b) 𝐴 ⊆ 𝐵 iff  𝛼+𝐴 ⊆  𝛼+𝐵    ∀𝛼 ∈ [0, 1] 



 

Again as before let 𝐴 ⊆ 𝐵 

Suppose, if possible  𝛼+𝐴 ⊈  𝛼+𝐵     

⇒ there exist 𝑥0 such that 𝑥0 ∈  𝛼+𝐴 but 𝑥0 ∉  𝛼+𝐵  

⇒ 𝜇𝐴(𝑥0) > 𝛼, but 𝜇𝐵(𝑥0) ≤ 𝛼, together contradicts that 𝐴 ⊆ 𝐵.  

Why is the contradiction?   

 

We assumed that  𝛼+𝐴 ⊈  𝛼+𝐵   

Therefore, we prove that  𝛼+𝐴 ⊆  𝛼+𝐵     
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Conversely, suppose  𝛼+𝐴 ⊆  𝛼+𝐵   for all 𝛼, we need to show that 𝐴 ⊆ 𝐵.  

Suppose not.  

That means, there exist 𝑥0 such that 𝜇𝐴(𝑥0) > 𝜇𝐵(𝑥0) only in that case, we can say that 𝐴 ⊈ 𝐵 

Now, let 𝜇𝐴(𝑥0) = 𝛼 and 𝜇𝐵(𝑥0) = 𝛽  

Therefore, 𝛼 − 𝛽 = 𝜖 > 0 

Consider, 𝛼′ = 𝛽 +
𝜖

2
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Therefore, since 𝜇𝐴(𝑥0) = 𝛼 > 𝛼′   

Therefore, 𝑥0 ∈  𝛼
′+𝐴  

But, since 𝜇𝐵(𝑥0) = 𝛽 < 𝛼′ 

Therefore, 𝑥0 ∉  𝛼
′+𝐵  

So, this contradicts our assumption that  𝛼+𝐴 ⊆  𝛼+𝐵   for all 𝛼  

Therefore, we conclude that 𝐴 ⊆ 𝐵. Proved. 
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Let us now look at statement number  

(c) 𝐴 = 𝐵 iff  𝛼𝐴 =  𝛼𝐵    ∀𝛼 

Proof: Suppose, 𝐴 = 𝐵 

that is ∀  𝑥 ∈ 𝑋 𝜇𝐴(𝑥) = 𝜇𝐵(𝑥)  

Suppose if possible  𝛼𝐴 ≠  𝛼𝐵 



⇒ there exist, 𝑥0 such that 𝑥0 ∈  𝛼𝐴 but 𝑥0 ∉  𝛼𝐵 (or conversely).  

That is there may be 𝑥0 which belongs to  𝛼𝐵, but that does not belong to  𝛼𝐴, but the line of 

argument is going to be very similar.  

Since 𝑥0 ∈  𝛼𝐴, but 𝑥0 ∉  𝛼𝐵, ⇒ 𝜇𝐴(𝑥0) ≥ 𝛼 but, 𝜇𝐵(𝑥0) < 𝛼 

This contradicts the assumption that 𝐴 = 𝐵  
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Therefore, we conclude that  𝛼𝐴 =  𝛼𝐵.  

Conversely, suppose  𝛼𝐴 =  𝛼𝐵 for all 𝛼 ∈ [0, 1]  

We need to show that 𝐴 = 𝐵  

Suppose not, then there exist 𝑥 such that 𝜇𝐴(𝑥) ≠ 𝜇𝐵(𝑥) 

Let 𝜇𝐴(𝑥) = 𝛼, 𝜇𝐵(𝑥) = 𝛽 and without loss of generality let 𝛼 > 𝛽.  
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Therefore, 𝑥 ∈  𝛼𝐴, but 𝑥 ∉  𝛼𝐵, because 𝜇𝐵(𝑥) = 𝛽 < 𝛼 . 

This contradicts that  𝛼𝐴 =  𝛼𝐵  

Hence, we prove that if  𝛼𝐴 =  𝛼𝐵 for all 𝛼, then 𝜇𝐴(𝑥) = 𝜇𝐵(𝑥) for all 𝑥 or  

𝐴 = 𝐵, if and only if  𝛼𝐴 =  𝛼𝐵 for all 𝛼 

Statement (d), is very similar and I leave it as an exercise.  
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Ok Students. 

We have already seen the following properties with respect to 𝛼-cuts.  

1)  𝛼(𝐴 ∩ 𝐵) =  𝛼𝐴 ∩  𝛼𝐵 

2)  𝛼(𝐴 ∪ 𝐵) =  𝛼𝐴 ∪  𝛼𝐵 

3)  𝛼+(𝐴 ∩ 𝐵) =  𝛼+𝐴 ∩  𝛼+𝐵 

4)  𝛼+(𝐴 ∪ 𝐵) =  𝛼+𝐴 ∪  𝛼+𝐵 

These results we have already seen. 

 

And perhaps it is not difficult to imagine that we can now extend it to finite number of sets as 

well, question is what about similar results when the number is infinite or in other words, 
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That is, let {𝐴𝑖} be a sequence of fuzzy sets defined on a universal set 𝑋, where 𝑖 = 1, 2, … ∞  

That means, we are now looking at an infinite collection of fuzzy sets defined over the same 

universal set 𝑋.  

Question is what is the relationship between 𝛼-cuts of 𝐴𝑖𝑠 and 𝛼-cut of their unions, 

intersections?  

So, we need to study this when we are looking at an infinite number of sets 𝐴1, 𝐴2, 𝐴,3 ….etc.  
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So the theorem,  

(a) ⋃ ( 𝛼𝐴𝑖) 𝑖 ⊆  𝛼(⋃ 𝐴𝑖𝑖 )  

So, with respect to two fuzzy sets we have seen that they are actually equal but in this case 

we find that it is containment 

(b) ⋂ ( 𝛼𝐴𝑖) 𝑖 =  𝛼(⋂ 𝐴𝑖𝑖 )  



(c) ⋃ ( 𝛼+𝐴𝑖) 𝑖 =  𝛼+(⋃ 𝐴𝑖𝑖 )  

(d)  𝛼+(⋂ 𝐴𝑖𝑖 ) ⊆ ⋂ ( 𝛼+𝐴𝑖) 𝑖  

Thus, we can see that there is difference when we are looking at only two sets and when we 

are looking at infinitely many sets.  

In these two cases we find that the equality does not hold rather it is containment. 
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Question is why so?  

This happens because when we work on finitely many sets then  

𝜇(∪𝑖=1
𝑛 𝐴𝑖)(𝑥) = max

i
𝜇𝐴𝑖

(𝑥) 

When the number of sets is finite this maximum can be defined but, when we have infinitely 

many sets then we cannot define maximum. It is replaced with supremum.  
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Similarly, for intersection minimum is replaced with infimum and because of this we see that 

the equality does not hold for all the cases.  

So, with that small insight let us now start proving these results.  
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Theorem 

(a) ⋃ ( 𝛼𝐴𝑖) 𝑖 ⊆  𝛼(⋃ 𝐴𝑖𝑖 )  

Proof: Suppose 𝑥 ∈ ⋃ ( 𝛼𝐴𝑖) 𝑖  

⇒ there exist 𝑖0 such that 𝑥 ∈  𝛼𝐴𝑖0
  

⇒ 𝜇𝐴𝑖0
(𝑥) ≥ 𝛼  

Therefore, sup
i

𝜇𝐴𝑖
(𝑥) ≥ 𝛼  

Therefore, 𝑥 ∈  𝛼(∪𝑖 𝐴𝑖)  

We need to show there may exist 𝑥 ∈  𝛼(∪𝑖 𝐴𝑖) which does not belong to ⋃ ( 𝛼𝐴𝑖) 𝑖   
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Let us now show that if 𝑥 ∈  𝛼(∪𝑖 𝐴𝑖), then it is not necessary that 𝑥 ∈ ⋃ ( 𝛼𝐴𝑖) 𝑖  

 Consider the following, suppose ∀  𝑥 ∈ 𝑋 

𝜇𝐴𝑖
(𝑥) = 1 −

1

𝑖
  

What does it mean?  

That is, 𝜇𝐴1
(𝑥) = 0, 𝜇𝐴2

(𝑥) =
1

2
, 𝜇𝐴3

(𝑥) =
2

3
, … …  
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Therefore, sup
i

𝜇𝐴𝑖
(𝑥) = 1, because sup

i
(1 −

1

𝑖
) = 1 

Therefore, 𝑥 ∈  1(∪𝑖 𝐴𝑖), because the supremum is 1, therefore 𝜇∪𝑖𝐴𝑖
(𝑥) = 1 

But since 𝜇𝐴𝑖
(𝑥) = 1 −

1

𝑖
 

𝜇𝐴𝑖
(𝑥) < 1 for all 𝑖 



Therefore,  1𝐴𝑖 = 𝜙 for all 𝑖.  

 

What does it mean?  

Which means that here in this case 𝑥 ∈  1(∪𝑖 𝐴𝑖) but  1𝐴𝑖 = 𝜙 for all of them. 
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Therefore, 𝑥 ∉  1𝐴𝑖 for any 𝑖 

Therefore, 𝑥 ∉   ⋃  1𝐴𝑖𝑖  

Therefore, ⋃  1𝐴𝑖𝑖 ⊂  1(∪𝑖 𝐴𝑖)  

Proved.  

So this is the result that ⋃ ( 𝛼𝐴𝑖) 𝑖 ⊆  𝛼(⋃ 𝐴𝑖𝑖 )  
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Let us now prove that second result, 



(b) ⋂ ( 𝛼𝐴𝑖) 𝑖 =  𝛼(⋂ 𝐴𝑖𝑖 )  

So in this case we can see that there exists equality what do it mean?  

It means that if we take any 𝑥 ∈ ⋂ ( 𝛼𝐴𝑖) 𝑖 , we will prove that 𝑥 ∈  𝛼(⋂ 𝐴𝑖𝑖 ) as well and 

similarly if I take an 𝑥 ∈  𝛼(⋂ 𝐴𝑖𝑖 ) will show that 𝑥 ∈ ⋂ ( 𝛼𝐴𝑖) 𝑖 .  

Suppose 𝑥 ∈ ⋂ ( 𝛼𝐴𝑖) 𝑖  

⇒ 𝑥 ∈  𝛼𝐴𝑖 for all 𝑖,  

⇒ 𝜇𝐴𝑖
(𝑥) ≥ 𝛼  for all 𝑖 

⇒ inf
i

𝜇𝐴𝑖
(𝑥) ≥ 𝛼  

⇒ 𝑥 ∈  𝛼(⋂ 𝐴𝑖𝑖 )  
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Conversely, suppose  𝑥 ∈  𝛼(⋂ 𝐴𝑖𝑖 ) 

⇒ inf
i

𝜇𝐴𝑖
(𝑥) ≥ 𝛼  

⇒ 𝜇𝐴𝑖
(𝑥) ≥ 𝛼 for all 𝑖 

⇒ 𝑥 ∈  𝛼𝐴𝑖  for all 𝑖 

⇒ 𝑥 ∈ ⋂ ( 𝛼𝐴𝑖) 𝑖   

So we proved result (b) also, in a similar way one can prove results (c)  

I leave as an exercise, but what I prove now is result (d). 
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So result (d) is the following, it shows that:  

(d)  𝛼+(⋂ 𝐴𝑖𝑖 ) ⊆ ⋂ ( 𝛼+𝐴𝑖) 𝑖   

Note that here it is strict containment.  

Proof: Let 𝑥 ∈  𝛼+(⋂ 𝐴𝑖𝑖 ) 

⇒ 𝜇(⋂ 𝐴𝑖𝑖 )(𝑥) > 𝛼  

⇒ inf
i

𝜇𝐴𝑖
(𝑥) > 𝛼  

⇒ 𝜇𝐴𝑖
(𝑥) > 𝛼 for all 𝑖 

⇒ 𝑥 ∈  𝛼+𝐴𝑖 for all 𝑖  
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⇒ 𝑥 ∈ ⋂ ( 𝛼+𝐴𝑖) 𝑖   

Now let us look at the other way. 
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Now consider the following example:  

Let 𝜇𝐴𝑖
(𝑥) = {

1

2
   𝑖𝑓 𝑖 = 1

1

2
   𝑖𝑓 𝑖 > 1

  

Therefore, 𝑥 ∈  0+𝐴𝑖 for all 𝑖.  

Therefore, 𝑥 ∈  ∩𝑖  0+𝐴𝑖  

However inf
i

𝜇𝐴𝑖
(𝑥) = inf {

1

2
,

1

3
,

1

4
… … . . } = 0. 
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Therefore, 𝜇(∩𝐴𝑖)(𝑥) = 0 

Therefore, 𝑥 ∉   0+(∩𝑖 𝐴𝑖) 

So this proves the result.  



I stop here today in the next class I shall look into alpha cuts and strong alpha cuts we will see 

how these can be used to represent a fuzzy set, Thank you so much. 

 


