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Welcome  students  to  the  MOOCs  series  of  lectures  on  Statistical  Inference.  This  is

lecture number 14. In the last two lectures, we have been discussing the properties of an

estimators.  In  particular  we  have  seen  two  properties,  unbiasedness  and  of  course

consistency. Towards the end of the last class, I was discussing what is called efficiency.

An estimator having the minimum variance; that is, among all possible estimators. If the

variance is minimum, then it is called the most efficient estimator. 
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In fact, if T e is the most efficient estimator, then variance then the efficiency of another

estimator is defined as variance of T e divided by variance of T. So, let me call it T. In

other  words,  if  T is  any estimator,  then  its  efficiency  is  measured  by comparing  its

variance with the minimum variance estimator. Obviously, this is less than equal to 1, it

is one. If we are looking at some estimator T, whose variance is equal to T, variance of

whose variance is equal to the variance of T e. Otherwise, it is more than the variance of

T, and therefore this value has to be less than 1.
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The question is how to find the minimum variance estimator, this is very important. As

there is no (Refer Time: 04:30) of estimators right. We have already seen that, there can

be any number of estimator for estimating a particular parameter theta. But, the problem

is how do we know, ? this This is going to be the minimum variance.

The advantage there by is that, if we know that the minimum variance has to be a some

particular value say v, and if we get an estimator T whose variance is same as vV, then

we  know  that  it  is  the  minimum  variance  estimator.  In  this  respect,  we  mentioned

Cramer-Rao inequality. This is not for all the classes of estimators. This is applicable to a

restricted class of estimator, but still it is very very useful for statistical inference. 
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The C-R inequality or Cramer-Rao inequality, it states that if T is an unbiased estimator,

so this is very important. We are looking at within the class of unbiased estimators for

theta, then variance of T is greater than or equal to 1 upon expected value of del del theta

log of L whole square. More generally, if T is unbiased for g theta, which is a function of

the parameter theta, and we want to estimate g theta, then variance of T is greater than or

equal to g prime theta square upon the same quantity, which is expected value of del del

theta log L whole square.
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In this respect, what is L, L is the joint pdf of the sample x 1, x 2, x n or in other words

we want to estimate theta or some function of it. We have taken a sample x 1, x 2, x n,

we are looking at that joint density function of x 1, x 2, x n, which we call L. Of course,

L depends upon theta. So, in some books you may find,find L theta x 1, x 2, x n. In this

case, sometimes I will be using L theta only, because it is understood that, it is based

upon the sample x 1, x 2, x n.

Now, what is L theta or L theta of x 1, x 2, x n, it is joint pdf of x 1, x 2, x n. And if the

underlying pdf is f theta, because this is the pdf that involves theta, then L theta is equal

to f theta of x 1, x 2, x n. And if they are independent, then we can write it as product of f

theta of xi, i is equal to 1 to n. So, do not get confused with this L theta, it is something

that  we  know very  well.  Since,  the  samples  are  independent  most  of  them will  be

assuming, this form that L theta is equal to the product of the individual density of the

sample x 1, x 2, and x n.



(Refer Slide Time: 10:11)

The  quantity  expected  value  of  del  del  theta  of  log  L  whole  square  is  called  the

information about theta,  that we can obtain from the sample. And this name is being

given by R. A. Fisher ok.
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Now, as I mentioned earlier that the Cramer-Rao lower bound is satisfied under certain

conditions which are called regularity conditions. Note that theta,theta; the parameter to

be estimated belongs to some open interval theta on the real line. 
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Theta is a non-degenerate interval that means, theta has to be of the form a to b, a not

equal to b, so that differentiation with respect to theta make sense. The derivative of the

likelihood function exists almost for all x 1, x 2, x n. If at all there is an exception that

means, if it does not exist on some interval, if there exists such an interval, then that has

to be independent of theta. 
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3, expected value of del del theta log of f theta of x 1, x 2, x n whole square exists and

greater than 0 for all  theta belonging to theta,  because we know in the Cramer- Rao



bound this comes in the denominator. So, if it is not defined or if it is equal to 0, then that

term is not valid, therefore this has to be one of the constraints. Del del theta of f theta of

x 1, x 2, x n, d x is equal to del del theta of f theta x 1, x 2, x n, d x.

Now, you may ask what is this notation, and what is A. So, A is the set on which the pdf f

is  greater  than  0 or  in  other  words  we are  looking at  only the  region on which  the

probability density function is greater than 0. And what is d x, it is basically d x 1, d x 2,

d  x  n.  Say  for  example,  here  I  am  integrating  f  theta  x  1,  x  2,  x  n  and  to  be

mathematically precise, I have to integrate it with respect to x 1, then with respect to x 2

and with respect to x n. So, it is basically invariable integration.  To make to keep it

notational is  simpler,simpler; I am using that notation d x with a tilde, which actually

means this quantity. 
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And number 5 is del del theta of the estimator T f theta x 1, x 2, x n, d x is equal to

integration of so if you look at 4 and 5, you can see that basically we are allowing the

differentiation  to  moved  into  the  integral  sign.  And  this  is  possible,  if  this  limit  of

integration,integration does not depend upon theta ok.



(Refer Slide Time: 19:05)

With this assumption, now let us prove the Cramer-Rao bound that is proof that variance

of T is greater than equal to g prime theta whole square upon expected value of del del

theta log f theta of x 1, x 2, x n whole square. Note, here logarithm is with respect to e

and also note T is unbiased for g theta ok. So, we begin the proof in the following way. 
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We know, integration over a of f theta x 1, x 2, x n, d x that means, I am looking at the

joint density function. And I am integrating it over, the entire possible range, and that has

to be equal to 1, because the total probability is 1. Therefore, del del theta over A of f



theta x 1, x 2, x n, d x is equal to now, I am differentiating this with respect to theta, and

this  is  going  to  be  0.  Now,  by  the  regularity  condition  that  differentiation  under

integration, we can write it as follows or we can write it as so this is the first finding A. I

will come back to it later.
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Now, integration of del del theta of L theta d x is equal to 0. So, let  me write it  as

integration of 1 by L theta del del theta L theta into L theta d x is equal to 0. I am

dividing and multiplying by L theta, and since I am considering the range, where L theta

is greater than 0, this makes sense.

Because, if we differentiate log of L theta with respect to theta and taking that partial

derivative, then what we are getting, this is 1 upon L theta into del del theta of log L. So,

this entire quantity, I can write it as this. And that we are multiplying by L theta of x 1, x

2, x n and integrating. So, what is this, it is a function of x 1, x 2, x n, because this L

theta is L theta of x 1, x 2, x n. Therefore, this whole quantity is nothing but expected

value of del del theta of log of L theta. And just now, we observe that this is is equal to 0.

So, this is our finding 1.
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Again since T is an unbiased estimator for g theta, integration over a T of L theta, let me

write it with x 1, x 2, x n, but as we have seen, I am often leaving out this part. If the

notation is understood, d x is equal to g theta, because that is the expectation of T. Now,

differentiating it with respect to theta we get, I am leaving out this. 
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Now, by regularity condition, we can push it inside or as before, we divide and multiply

by L theta. So, I have multiplied and divided by L theta or integration over A del del theta

of log of L theta into L theta is equal to g prime theta or this is expected value of T del



del theta log of L theta, this is is equal to g prime theta. So, if you look at in 1, we have

got  expected  value  of  del  del  theta  log  theta  is  equal  to  0.  And here,  we have  got

expected value of T into del del theta log theta is equal to g prime theta. Let me call it

equation 2.

(Refer Slide Time: 37:32)

Now, we know that covariance the, we know that the correlation coefficient between two

variables X and Y, which we called rho XY is such that rho square XY is less than equal

to 1 that is, because the mod value of rho XY has to be less than equal to 1. Now, what is

rho? rho is equal to covariance of XY upon root over variance of X and variance of Y.

Therefore, covariance of X, Y square is less than equal to variance of X into variance of

Y, and this is true for any two random variables X and Y. 
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Therefore, we can write that covariance between T and del del theta of log L theta is less

than  equal  to  variance  of  T  into  variance  of  del  del  theta  of  log  L  square.  Now,

covariance between T and del del theta log L theta can be written as expected value of T

times del del theta log L theta minus expected value of T into expected value of del del

theta log L theta. This as we have seen is equal to 0, therefore this quantity is 0.

(Refer Slide Time: 30:47)

Therefore, we are left with covariance between T and del del theta log L theta is equal to

expected value of T del del theta log L theta, and which we have found that expected



value of T del del theta log log L theta is equal to g prime theta. Therefore, this is is equal

to g prime theta. 

Now, let us look at this, let me call it 3. Therefore, by putting the value g prime theta

here, we get g prime theta square is less than equal to variance of T into variance of del

del theta log L theta or variance of T is less than equal to g prime theta whole square

upon variance of del del theta log L theta. Let us call it 4 sorry I made a mistake there

variance of T has to be greater than equal to this quantity.

(Refer Slide Time: 33:10)

Now, in 4 let us look at what is variance of del del theta log L theta is equal to expected

value of del del theta log L theta whole square minus expected value of del del theta log

L square. And this is equal to 0 from 1. Therefore, variance of del del theta log L theta is

equal to expected value of del del theta log L theta whole square, putting this in 4. 
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From 4, which is variance of T is greater than equal to g prime theta whole square upon

variance of del del theta log L theta, we can write it as variance of T is greater than equal

to g prime theta whole square upon expected value of del del theta log of L theta whole

square. So, this is the result, that we were trying to prove that variance of T has to be

greater than equal to this, where this is called the I theta.
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Now, this  quantity  expected value of del del theta log L theta whole square is often

difficult to calculate. Hence, I give some simpler form. 
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Suppose  x  1,  x  2,  x  n  are  i  i  d  that  means,  they  are  independent  and  identically

distributed. Therefore, what is L theta of x 1, x 2, x n this is is equal to f theta of x 1, x 2,

x n, which is the joint pdf of the sample values. Since, these are independent, we can

write this as f theta of x 1 into f theta of x 2 into f theta of x n. Therefore, log of L theta is

equal to log of the product. And since log of product is equal to some of the logs, this is

same as sigma, i is equal to 1 to n log of f theta x i.
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Therefore, expected value of del del theta log L theta whole square is equal to expected

value of del del theta of sigma log of f x i, i is equal to 1 to n whole square is equal to

expected value of del del theta of log of f theta x 1 plus del del theta of log of f theta of x

2 plus del del theta of log of f theta of x n whole square. So, now you will understand the

difficulty, it becomes the sum of n terms whole square.

So, this we are writing as expected value of sigma i is equal to 1 to n del del theta of log

of f theta of xi whole square, because I am collecting the individual square terms plus

sigma over i not equal to j del del theta of log of f theta x i into del del theta of log of f

theta x j. And I am looking at expectation of that one, bringing the expectation because

of the linearity of expectation. 
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This is is equal to sigma i is equal to 1 to n expected value of del del theta of log of f

theta x i whole square plus sigma i not equal to j expected value of del del theta log of f

theta of x i into del del theta of log of f theta of x j, i not equal to j. Now, note that all x

i’s  are  identically  distributed.  Therefore,  this  term is  same  for  all  i.  Therefore,  this

particular term boils down to sigma i is equal to 1 to n expected value of del del theta of

log of f theta of x square plus let us consider this part it is the expected value of two

terms, the product of two terms, one is based on x i, other is based on x j. And x i and x j

are independent.



Therefore,  the  covariance  between them is  has  to  be  0,  and also  we have  seen that

expected value of this is 0, because even for that greater thing the L we have found that

expected value of del del theta log L is equal to 0 by the same technique. We can find out

that expectation of del del theta log of f theta x i is equal to 0. Therefore, what we find

that this is the product of two terms, which are independent.

Therefore,  their  covariance  is  0,0; moreover  their  individual  expectation  is  0.  And

therefore, since covariance of X, Y is equal to expected value of X Y minus expected

value of X into expected value of Y. In this case, we find this is 0, this is 0, therefore

expected value of X Y is also going to be 0 or in other words expected value of del del

theta log f of X Y multiplied by del del theta log f of x j. This is going to be 0, for each

pair i j, i not equal to j. Therefore, I make it 0. I hope that, you understood the logic.

Therefore, what we find that expected value of del del theta of log L whole square is

actually this term, which is nothing but n times expected value of del del theta log of f x

square. So, this  is another interesting form of I theta,  in solving problems instead of

using this we may often use. This as the denominator of the right hand side of the lower

bound or right hand side of the Cramer- Rao inequality. 
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 Now, let me discuss another form for I theta. We know that the expected value of del del

theta log L is equal to 0, we have already seen that. Now, consider expected value of let

us try to compute this. What is this? 
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Let us consider, the product del del theta log L and L. And let us consider, it is partial

derivative with respect to theta, we know that these are also dependent on theta. By by

rule of multiplication for derivatives, we can write it as del del theta of del del theta log L

theta times L theta plus del del theta log L theta into all right.

This is very straightforward, because it is first function derivative of 1st function into

2nd function plus 1st function into derivative of 2nd function. This we can write as del 2

del square del theta square of this we can write as del square del theta square of log L

theta times L theta plus del del theta of log L theta times del del theta of L theta. 
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Therefore, del squared del theta square log of L theta into L theta is equal to del del theta

of del del theta of log L into L theta minus del del theta of log L theta into del del theta of

L. We started with this, and we have obtained this.

And therefore, what we are getting is del square del theta square log L theta L theta is

equal to del del theta of del del theta log L theta multiplied by L theta minus del del theta

log L theta into del del theta of L is equal to del del theta of del del theta log L theta into

L theta minus del del theta of log L theta into 1 by L theta into del del theta log of L into

L theta is equal to del del theta of del del theta log L theta into L theta minus del del theta

of log L theta. And this, we can write is that we have already seen that it is del del theta

of log of L theta into L theta.
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Or del square del theta square log of L theta into L theta, can be written as del del theta

log L whole square into L theta. This is coming, because this is the same term, so it is

square of del del theta log L theta square. Therefore, on integrating both sides, we have

the expected value of del square del theta square log of L theta is equal to del del theta of

expected  value  of  del  del  theta  of  log  L,  I  am integrating  with  respect  to  the  pdf.

Therefore, I get expected value of that one minus expected value of del del theta log L

whole square.
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Since, we know the expected value of del del theta of log L is equal to 0, this we have

found, before this part is going to be 0. Therefore, we can see that the expected value of

del del theta log L whole square is equal to minus of this thing. Expected value of del del

theta log L square is equal to minus of expected value of del 2 del theta square log of L

theta. And we know that this is the I theta. 

Hence, we get another expression for I theta, which is this minus of expected value of del

theta del theta square log of L theta. So, we have got three different forms. One from the

actual proof, but from there we have derived two different forms, one is this one, and the

other one is n into expected value of del del theta log f whole square.

So, in problem solving, we shall be using one of these forms. And we will be able to

solve certain problems. So, in the next class, I will solve a few problems using Cramer-

Rao inequality. And show that, how we obtain the lower bound in certain cases when we

are dealing with the unbiased estimators for a function g theta of the parameter theta.

Ok students, thank you, seeing you in the next class.

Thanks.


