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Hello  welcome to NPTEL NOC course on Points Set  Topology Part  (II).  We will  begin

Chapter 4 with certain other notions of compactness, `other' in the following sense. We have

studied  compactness  itself.  Closely  related  was  Lindelof  property.  Then  we  have  local

compactness and paracompactness.

So, now we should study some other notions here, these notions have been selected maybe be

can say, just my personal taste or rather one's belief that these are the more useful ones in

analysis and topology, central analysis and topology. When we study function spaces which

may not be compact, yet have certain other features of compactness. 

So, that is what we would like to study. Like paracompactness was one of our obsession. You

should also study these properties for metric spaces wherein many of them come together.

Then  we  shall  do  a  criterion  for  metric  spaces  to  be  compact.  Lastly,  we  give  a  very

important  application of  this  to topology of function spaces,  namely,  what are  known as

Ascoli’s theorems. Actually we will do only one of them. So, that is the general idea for

chapter 4.
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So, let us now begin with this module 15. Start with any topological space. Then I am going

to  introduce  three  different  notions  of  compactness  here.  The  first  one  is  countable

compactness.  So,  I  may  just  denoted  it  (CC)  in  the  following  section  all  the  time.  So,

countable compactness: If every countable open cover for X admits a finite sub cover. 

This is similar to Lindelof property, but in contrast Lindelof property gives you a countable

cover out of any cover, whereas countable compactness gives you a finite cover cover out of

a  countable  cover.  So,  you  can  see  that  Lindelof  plus  countable  compactness  implies

compactness. That is one easy consequence of this definition. 

The second one is  limit  point  conpactness,  which has something to  do already  with  our

experience with metric spaces, namely, dealing with sequences, dealing with limit points. So,

if every infinite subset of  has an accumulation point or what is called a limit point, that is

called  limit  point  compactness  (LPC).  This  is  also  called  Bolzano-Weierstrass  property.

Bolzano-Weierstrass property is also reflected in the next one, but we will call it a sequential

compactness and denoted by (SC): if every sequence in  admits this subsequence which is

convergent. 

In fact, in standard real analysis, whenever you come across this property `every bounded

sequence has a subsequence which is convergent' and so on, either you prove it or you state

it,  you  refer  to  it  as  a  Bolzano-Weierstrass  theorem.  But  this  property  is  not  Bolzano-

Weierstrass property. So, you have to make a slight distinction here. Bolzano-Weierstrass

property if you want to refer to is is the limit point compactness defined above.



That is why I call it limit point compact not to confuse with the standard Bolzano-Weierstrass

theorem as such. 

So, countable compactness, somewhat similar to Lindelof, but it is somewhat closure to limit

point compactness and sequential compactness.
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In a metric space, you may have seen that compactness implies these three properties. These

are the standard properties of compact metric spaces. So, we extracted these properties and

made then into definitions. In general, this may not be true that compactness implies any one

of these things. We will have to be careful here. Something maybe true some of them may

not be so.



So, let us go through this carefully. So, let us check these things a fresh one by one, in the

general setup. Start with compact space . It is clearly countably compact. After all every

open cover will admit a finite sub cover, so countable covers also admit a finite sub cover.

So,  compactness implies countable compactness. 

Now, take the second one. Let  be an infinite subset of . If  has no accumulation point

then it follows that  is a closed discrete subset of . In any closed set there are two types of

points, those which are in the set itself and those which are not in the set. Points of the second

type are  accumulation points  of the set.  Therefore,  if   has  no accumulation points it  is

closed. Further it follows that each singleton  is an open set in . Therefore, if  has no

accumulation points then it follows that  must be closed discrete subset. In particular being

closed subset of a compact space ,  it is a compact space. But in a compact discreet subset,

there are only finitely many points. So, this is a contradiction, we started with infinite set.

Therefore, A must have a limit point. So, properties (1) and (2) are fine. May be compactness

implies (3) also? And then you are lucky, but you have to be careful.
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Finally, let   be any sequence in  , where   is a compact space. If the image of the

sequence is a finite set, then there will be a subsequence which takes a constant value and

such a subsequence is convergent.  On the other hand, if the image of the sequence is an

infinite set, we just do not know how to extract a convergent subsequence out of it. Indeed, it

happens  that  compactness  does  not  imply  sequential  compactness.  This  may be  a  small

surprise for you. 

So you have to be careful with this property. So, let us first understand an example which

makes sure that compactness in general need not imply sequential compactness. So, do not

confuse it with Bolzano-Weierstrass properties all the time, so that is the whole idea. 
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So, here is an example. Take . That is a standard notation for the subspace of  consisting

of  and . It is just a discrete space with two points, that is all. We do not care about the

group structure here, though I have used the notation which is common for the group with

two elements.

Take  equal to  product of how many copies of ? As many as the power set

, where  is the set of natural numbers. The cardinality of the power set of  is nothing

but the cardinality  of . One could have just written  here. So, but I want to use this

specific description of this power set. So, this is the power set of  all subsets of the natural

numbers. 

Take the Cartesian product of so many copies of the discrete space . So, indexing set is the

power set of . So by Tychonoff theorem, we know that  is compact. We shall claim that

this space is not sequentially compact. 

To show that   is not sequentially compact, I have to produce one sequence which has no

subsequence which is convergent. So, I will give you an example, namely, take the sequence

 defined as follows: what are  ’s? They are functions from  into  . So,   of a

subset  of  is equal to  if this  belongs to ; otherwise defined . For example

 and so on.

Now, let  be any subsequence. Take  be the set  i.e., just take the set

of all , where  is odd. To see that the sequence  is not convergent, it is enough to

check that the sequence  in  is not convergent. But this latter sequence is nothing

but the alternating sequence 

Here we have used the fact that the coordinate projections from a product space into any

factor are continuous and applies it to the -th projection from  to . So, we have

proved that this space  is not sequentially compact.
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Now, let us try to do some other implications on the positive side. 

The first thing is countable compactness implies limit point compactness. Under  axiom the

converse  always true.  So, you can just  say (1)  implies (3)  and under   axiom they are

equivalent. You can see that slowly we are bringing them nearer to the metric spaces.  

spaces are slightly closer to metric spaces. Metric spaces are very strong being   spaces,

completely normal  and  .  So,  let  us see  how one proves  it,  without  using any distance

function. You have to do everything purely topologically.
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So, let  be countably compact and  be an infinite subset of . If possible suppose  has

no accumulation point. This means that   is a closed discrete subset (as seen before). Also

being closed subset of ,  itself is countably compact. 

It  is  an  easy  thing  to  see  that  closed  subsets  of  countably  compact  space  are  countably

compact,  just like closed subset of a compact space are compact, exactly same proof will

work.  Clearly  there  exist  a  countably infinite  subset   of   because  we started  with  an

infinite subset   of  . Then   is also countably compact and discrete, countably compact

because the set itself is countable and discrete because it is a subspace of a discrete space.

But  has a countable open cover viz.,  which has no finite subcover. So, that is

a contradiction. 

So, any infinite set must have a limit point if it is countably compact.
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Let us prove the converse now, under the axiom  for . So,  be a  space and limit point

compact. Now, you take any countable open cover  for . If possible, suppose there is

no finite subcover. What does that mean?  does not cover . So, there will be  which is

in the complement of , next you can find an  and  such that  is different for 

and is not in the union of  for . And so on, you find an increasing sequence  of

integers such that   is not in the union of all  ,   and different from all the  

chosen earlier. 



Here we have used the assumption that  has no finite subcover. So, you get an infinite

subset .

Now, use the limit point compactness property of . Let  be a limit point of this infinite set

. Let  be in  for some . Since  is a  space and  is a limit point of , it follows that

 itself is an infinite set. 

So, this is where we are using the  property. If a limit point of  belongs to an open set ,

then  must be an infinite set. But we know that none of  are inside . That is

a contradiction. 
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So what we have proved? We have proved that under  axiom, (1)  and (2), viz., countable

compactness and limit point compactness are the same. 

Next, a similar result: sequential compactness implies limit point compactness; 

(3) implies (2) now. And under the axiom  and first countability, the converse holds.

(1) implies (2) always, and (3) implies (2) always. So 2 is the weakest one, but under 

(1) and (2) are same and under  and first countability (2) and (3) are equivalent. 

That is the theorem. 
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So, let us prove this theorem also. This is also equally easy. Set  be a sequentially compact

space and  be an infinite subset. Then we can define a sequence  in  of distinct points.

Let   be a limit  point  of some subsequence.  Then it  is easily check that   is  actually  an

accumulation point of  . So, having an infinite set of distinct points is important here. So,

very straightforward there is nothing hidden here.
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Now, conversely, let now  be a  and -countable space and a limit-point-compact space.

Now start with a sequence  in it and let  equal to the image set of this sequence. If 

finite then clearly there is a subsequence which is a constant and hence convergent. 



So, if   is finite is no problem. Suppose now  is infinite. Then let   be an accumulation

point of  . Now, let   be a decreasing family of neighbourhoods of   which forms a

local base at . This is where -countability is used. -countabilty gives a countable local base

. Then you can take . 

So, you can make a decreasing sequence of neighbourhoods that will form a local base at .

Since  is , it follows that  is an infinite set for all  (this idea, we have used earlier

also)  because   is  an accumulation point  of  .  So,   is  an  infinite  set  for  each  .

Therefore, we can choose a subsequence  such that  belong to  for each . It follows

that this subsequence is convergent to .  

So, first countability as well as  is used here to extract a subsequence out of a sequence. In

the case when the sequences infinite. If sequences consists of finite number of elements that

there is no problem that will always have a subsequence which is convergent.
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The next theorem is: A sequentially compact  space is countably compact. Now, I am going

from (3) to (1) sequentially compact   space is countable compact. The proof of this does

not need any new ideas, after seeing the proofs of the previous two theorems. So, I feel that

you should be able to extract a proof on your own. So, try your hand okay? This will be left

as an exercise, as an assignment to you. 



Next theorem is that if   is first countable compact space then it is sequentially compact.

Right in the beginning, we saw that  compactness does not imply sequential compactness.

However, under -countability compactness implies sequential compactness. 

So, that may be the reason why compact metric spaces are sequentially compact. You see,

because metric spaces are always -countable. So, this way the essence of all these properties

comes out, rather than just if you study the non-metric spaces.
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So,  how do we proved  it?  Start  with a  sequence   in  a  first  countable  space   and

suppose this has no subsequence which is convergent. We first claim that every point in 

has a neighbourhood  such that only for finitely many ,  will be inside . There

may not be any point that is fine, if at there will be a finite number of them.

Suppose this is not true, what is the meaning of this is not true? I am claiming that for every

point something is happening, that is not true means that that is some point, at least one point

 such that every neighbourhood   of   has infinitely many   in it. No matter how

small you choose that  to be. So, this is the denial (negation) of our claim.

Now, let be   be countable local base at   which is decreasing. So, the  -countability

enters into the discussion. Choose  such that  is inside . Having chosen  such that

 is in , choose  such that  is in . This is possible because there are

infinitely many  for which  belongs to .  



Now, it is clear that this   is a subsequence and this sub sequence will converge to  

because they are inside smaller and smaller members of this local base. This contradiction

proves that for every point  , there is an open set   for which there are only finitely

many  such that  belongs to .
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Now look at the open cover . This has a finite subcover, because  is compact.

See compactness  enters only now. So, that would mean that  the sequence   has only

finitely many points. Where are all the points ’s? They have to be in one of these finitely

many  . But of each of these  's contains only finitely many. Therefore

there are only finitely many points. But then it has a subsequence which is a constant and

hence convergent. A contradiction. 



So, you must be satisfied now that whatever you have learned in metric spaces is correct,

even if we have not proved them at that time.  Direct proofs in the case of metric spaces is not

much  easier  either;  you  need  to  use  -ness  and  -countability  without  specifically

mentioning them. That is all. 
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Here is a picture which will help you to remember what are all the implications compactness,

countable compactness, limit point compactness, start with compactness add first countability

you can go to sequential compactness. Start with sequential compactness, you can always go

to limit point compactness; put  and first countability you can come back; start from here

you can always come to limit point compact, but under -ness you can go back also.



So,  this  is  all  what  we  have  proved  so  far.  So,  far  we  have  never  gone  back  here  to

compactness itself. So, that is our next step what will imply this one that is the kind of thing

we would like to do. I think that is enough for today. So, next time we will go into deeper

into the,  this one namely,  we will  bring now metric  spaces  and some condition, criteria,

which will finally give you will allow you, to go from somewhere here to here and so on.

Thank you.


