
Introduction to Data Analytics 

Prof. Nandan Sudarsanam and Prof. B. Ravindran 

Department of Management Studies and 

Department of Computer Science and Engineering 

Indian Institute of Technology, Madras 

 

Module – 08 

Lecture – 46 

An Introduction to Online Learning - Reinforcement Learning 

(Refer Slide Time: 00:14) 

 

Hi, so in the previous module we started looking at the multi arm bandit problems and 

we will continue looking at some of the solution approaches for multi arm bandits. First 

you recall, in this case we have n possible outcomes and we have to select one of the 

actions from this set of n actions and each action results in a reward derived from the 

probability distribution associated with the action, yet our goal is to find the most 

profitable action. 



(Refer Slide Time: 00:46) 

 

So, the goal could have different shades to it, so we are interested in finding the best arm, 

but when or how are you interested in finding the best arm. So, the simplest notion of 

solving the bandit problem is to identify the correct arm eventually, regardless of how 

many ever attempts we take as long as you can give a guarantee that eventually I will be 

trying the best arm that is sufficient. But, then if you want to get more practical 

algorithms we have to look at other notions of solving the problem. 

So, look at two here, so first one is we would like to maximize the total rewards, that you 

obtain not just the rewards that you obtain eventually, but also the rewards that you 

obtain during the course of learning. So, this is called sometimes minimizing the loss or 

regret while learning. So, the regret is how much better you could have done, if you had 

known the true solution from the beginning. 

So, that quantity is known as the regret and you would like to minimize the regret and 

the second solution concept that people look at is called probably approximately correct 

solutions. So, I am interested in finding an Epsilon optimal arm, the Epsilon optimal arm, 

is such that the mean of the selected arm mu is within Epsilon of mu star, which is the 

expected reward for the best arm. I am going to find an Epsilon optimal arm that gives 

me the approximately correct part and then, I am going to say that my algorithm will 

surely return the Epsilon optimal arm in 1 minus delta fraction of the problem instances. 

So, the probability 1 minus delta by algorithm we give you an Epsilon optimal arm. So, 

for fixed values of Epsilon and delta, we try to figure out how many samples do I need 



before I can give such a guarantee. So, the probably approximately correct framework 

that probably comes from the factor that I am interested in returning solutions with 

probability 1 minus delta and approximately correct, because I am interested in returning 

solutions with an Epsilon of the true solution. 

(Refer Slide Time: 03:25) 

 

So, there was that, the most simple traditional approach is to essentially pull the arms 

multiple times, keep track of the reward that you get over time. So, I would estimate mu 

hat i as the sum of the rewards I get and I pulled the arm i divided by the total number of 

times I have pulled arm i, that gives me an estimate for the average reward I expect to get 

when I pull arm i. And we know that, this is an unbiased estimator of the reward and 

hence with the enough samples as time goes to infinity, these will convergence to the true 

expectations and I can derive the best arm, I just looking at the arm with the maximum 

expectation. 

To ensure that we select the arms infinitely often, we use an Epsilon 3D strategy. So, you 

select the arm that you currently think is the best arm, the arm star that gives you the max 

over all mu hat i. You select that arm with the probability of 1 minus Epsilon and Epsilon 

is some small constant like 0.1 or something and you can select any arbitrary arm with 

the probability Epsilon. So, this guarantees that every arm will get selected and therefore, 

as the number of place goes to infinity, then every arm gets selected infinitely often. 

Therefore, asymptotic convergence guaranteed for these kinds of Epsilon 3D action 

selection. 



(Refer Slide Time: 05:12) 

 

The one of the state of the art algorithms that you will look at is called Median 

Elimination algorithm, so this is a PAC algorithm. So, it gives you probably 

approximately correct guarantees and I tries to control the sample complexity, it is got 

one of the best known sample complexity for solving a multi arm bandit problem. 

(Refer Slide Time: 05:40) 

 

So, let us to get an intuition into how these things work, let us start by looking at a 

simple algorithm, which I will call the naive algorithm. So, you start of by sampling each 

arm l number of times, where l is given by the expression here. So, it is 4 by Epsilon 

square log 2 n by delta. So, n is the number of arms, the Epsilon will delta or the 

constants from your PAC results. So, you sample an arm, each arm actually l number of 



times and let p hat be the average reward of arm a. 

So, the output, this is essentially the arm that has the maximum of all the arms in the 

expected reward sense. So, this is; obviously, has a sample complexity of n by Epsilon 

square n log n by delta. The real difficulty is to show that, it actually achieves the desired 

performance guarantee that is with the very high probability of 1 minus delta you will 

return the Epsilon optimal arm and define with only probability delta. So, we will not 

going to, we are not going to get in to the mechanics of the proofs, it is quite beyond the 

scope of this course, but just I am pointing out that you can come of this simple 

algorithm and you can often show that they achieve the guarantees that you want. 

(Refer Slide Time: 07:06) 

 

So, one of the drawbacks of the naive algorithm is that the complexity depends on log n 

by delta. So, you cannot avoid the order n terms, because you have to pull each arm at 

least once, but you want the additional factors to be dependent only on Epsilon and delta 

you do not to have an additional dependence on n in your algorithm. So, Evan-Dar et al. 

devised an action elimination procedure, which allows you to be pretty efficient in your 

finding the optimal arm. 

It can also serves as the basis for many other algorithm and therefore, I spend a couple of 

minutes looking at the median elimination algorithm. The key idea here is that, after 

some number of samples you are going to eliminate some arms and then, you are going 

to continue sampling with the rest of the arms. 



(Refer Slide Time: 07:53) 

 

So, here is the algorithm, it looks a little complex, but it is nothing really it is fairly 

straight forward. So, you start of by having a set of all the arms available to you start off 

with an epsilon and a delta and start off with l equal to 1 it means that your sampling l 

equal to 1, which is essentially in first round. So, here now you sample every arm that is 

left right. So, in the first stage it will be all the arm set this many number of times 1 by 

epsilon l by 2 square log 3 by delta l and let p hat a l denote its empirical value. 

So, now, what we have done taken the arms you are pulled each of them some number of 

times and from that you have formed in estimate of the average in one of the arm. Now, 

what we do you arrange these averages in some sorted order, let us say you arrange the 

averages in ascending order and then, you take the first half the half that is below the 

median. So, the half of the data that is below the median you take those and you 

eliminate them. 

And now, what you are left with you have half the arms, which had the highest possible 

expected mean from the previous round. So, now, you repeat the whole thing again 

except that you make your epsilon and your delta even smaller. So, with the little bit of 

algebra you can actually show that this gives you nice performance guarantees it gives 

you a PAC results, so gives you the Epsilon delta guarantees. 



(Refer Slide Time: 09:48) 

 

In addition to that you can also show that it has a sample complexity of n by epsilon 

square log 1 by delta we go off by epsilon square log 1 by delta. So, you got of the n in 

the logarithm that is a big step and it terms on that it is very hard to improve on median 

elimination algorithm at least using these kinds of process that we will looking at. But, in 

practice this kind of PAC guarantees are weak and typically you can get acceptable 

performance with far fewer samples and the PAC algorithm also do not cared about, how 

your performance varies while you are learning. And hence increasingly regret analysis 

of data is becoming more and more often. 

(Refer Slide Time: 10:34) 

 

So, here is a very simple algorithms that can be shown to give very good regret 



performance. So, you not only maintain the best estimates or the estimate of the rewards 

that you have, so, far, but you also maintain some kind of an uncertainty interval around 

the reward. So, look at this orange curve here. So, this is the mean reward I have, but 

then, I also have would uncertainty or some kind of a confidence interval here that says 

that a the true reward with the very high confidence would be within this interval. 

So, you can see that for some arms even though the estimated mean rewards are lower 

their uncertainty is much higher. And, so what we really are looking for is, so if you have 

the best estimate arm and the other arms played only of the upper bound of a suitable 

confidence interval is at least r one of the simplest approaches could be just be greedy 

with respect to upper confidence bounds you estimate the upper confidence bounds. 

And when you take actions that have the highest upper confidence bounds with; 

obviously, going to the something higher than essentially this case you would played the 

arm red as supposed to orange and blue even though orange has the higher expected 

mean. 

(Refer Slide Time: 12:05) 

 

So, you can show that the sub optimal arm are played fewer than 8 by delta j times, 

where delta j is the difference between the optimal arm and the sub optimal arm and this 

allows us to come up with very efficient bounds for this upper confidence bounds 

algorithm UCB, so the algorithm is very simple. So, at any time you played the arm j that 

maximizes x j bar, which is your average reward. So, far plus this funny expression 

under the root 2 ln n by n j, where n is the number of arms and n j is the number of times 



you have played arm j, so far. 

So, that expression actually comes from estimating upper confidence bounds and this 

help us show that the sub optimal on can be played I will be played fewer than 8 by delta 

j ln n times. So, one of the implication of all of this I am giving you lot of numbers, but 

in practice you do not really have to worried about this numbers, because all we are 

interested in this figuring out with there is a fewer number of samples can I estimate 

what the outcome will be. And UCB essentially gets you there very quickly even though 

does not guarantee that it gives you the best outcome, but it reaches there in it reaches 

close to the best outcome pretty quickly. 

(Refer Slide Time: 13:34) 

 

So, I was talking about showing adds as one of the use cases, but if you think about it for 

each user you would like to show different adds you do not want to show the same add to 

different users. But, if you are using a single bandit algorithm that is learning the 

preferences of all the users that is what you end up doing. So, one solution around this is 

to build one bandit for each user, but given the large volumes of users there are likely to 

come to your page and restrictions on computation and sets there is not. 

So, what we do is you typically share features across different users it could be 

demographic features, it could be browsing history, it could be location or it if you 

talking about patient data that it could be history patient history that could be variety of 

different features that you would share and your expected reward for getting the for 

pulling, then arm. Now, b represented as a function suppose to being a number is the 



function of these features as suppose to being a single estimated number. 

(Refer Slide Time: 14:54) 

 

So, you can solve this in many different ways you can assume that each user is 

represented by a set of features that could be set of joint features of the user and of the 

arm the statistic used for choosing arms is now, dependent on these features this 

essentially what I was telling the statistic. In some cases can just be the mean reward 

could be the upper confidence bounds to the verities of things. So, the simplest case is to 

consider that for each feature combination you have a different bandit once a choice is 

made there is a stochastic transition to another bandit this just to make it conceptually 

easier. 

But, that is not really the case, because each of this bandits are going to be closely 

interacting, because the feature value might be similar in which, case the outcomes for 

one bandits could be same for other bandits. So, earlier work there was on associative 

bandits were typically use a small number of states to encode this features and you do 

not really worried about functional representations for the values. So, once I have a 

function that is going to output a value a real value as a function of features, what would 

you think of doing exactly. 



(Refer Slide Time: 16:14) 

 

So, we could do linear regression, so where UCB variation, where you use linear 

regression to predict the mean reward and you use a upper confidence bounds to from the 

linear regression algorithm is called Lin UCB and on of the more popular contextual 

bandit algorithms out there. So, they expected reward is assume to be a linear function of 

the features people typically end of using ridge regression, which is l 2 initialized linear 

regression to fit the parameters and you can derive upper confidence bounds for the 

regression fit. So, it gives better performance with lesser training data. 

(Refer Slide Time: 17:00) 

 

So, is here is a simple set of results for predicting click through rates on adds and you 

can see that if only one percent of the add data is available for training available for 



estimating the parameters we could see that Lin UCB methods, which are this and this do 

much better, then regular UCB method, which nodes to this generalization across 

different users. So, you can see that 5 percent data again, so the Lin UCB variance are 

doing better, but then if you have a lot of data available for training we could see that the 

other methods pretty much catch up with Lin UCB. So, the idea here is that if Lin UCB 

you have better performance with lesser training data. 

(Refer Slide Time: 17:57) 

 

And, so people now, are looking at more powerful approximation looking at cousin 

approxy looking at other more complex sampling techniques lot of work go and once 

very active variant. So, people are looking at budgeted bandits people are looking at case 

where there are adversarial bandits and then, people are looking at dependencies between 

samples and multi slot cases and there are many, many, many different problems that 

people are sharing in the bandits literature. 

One thing of interest is to consider, what I call a full reinforcement learning problem in 

the contextual bandits case. So, you have the context the user comes and picks an action 

and after that, which is move on to other user. But, in the full reinforcement learning 

problem, so you have to make a sequence of decisions before you can truly solve the 

problems. So, the faced with a situation or states or a set of features you take an action 

then, that results in the set of features being changed other you have to take another 

action and another action another action until the problem is solved. 

So, think of the question of riding a cycle right all of you know how to ride cycle, then 



think of how you will learned to ride a cycle you dint learned through supervised 

learning there is no body telling you how to turn the how, what a pressure to put on a 

peddle and what angle you should tilt to your upper body and things like that if I will 

telling you the technical aspects of cycling you probably learn to cycle all in get on the 

cycle and make sure we do not fall of or if you fall of in get hard you do not do the thing 

in next end and soon you are if find yourself cycling. 

So, this is the essentially a form of reinforcement learning when each action you take and 

if you make a bad move you are just going to keep tilting take until you fall. So, each 

action you take causes the change in the state and you have to concentrate for that and, 

then continue learning. So, this is called the full reinforcement learning problem and the 

idea that we describe here like PAC, MDP and optimal exploration, so and so on, so 

forth, have been extended to the reinforcement learning problem as well. 

So, here are couple of that are few tutorials and source material for learning more about 

bandits if you are interested, so this is the end of the module. 


