
Introduction to Data Analytics 

Prof. Nandan Sudarsanam and Prof. B. Ravindran 

Department of Management Studies and 

Department of Computer Science and Engineering 

Indian Institute of Technology, Madras 

 

Module – 06 

Lecture - 35 

Neural Networks 

Hello and welcome to the module on back propagation or how you are going to train 

artificial neural networks and determine the weights. 

(Refer Slide Time: 00:13) 

 

So, to keep things simple, let us start off with a single neuron and that is going to have a 

logistic sigmoid as the output function. So, you are going to write here f hat of x is equal 

to b plus w transpose x and then, you pass that through your sigmoid function o. So, o in 

this case would be the logistic sigmoid, where we will say o of v is 1 by 1 plus e power 

minus v. So, we saw this in the last module, so the error measure that we will be using is 

the squared error. 

So, the excepted error of the parameters w going to be half times, the excepted error w is 

going to be summation i equal 1 to n, where n is the number of training data points that 

you have of the squared error for each training data point. So, the way we are going to 

use this for changing the weights is essentially to compute the gradient of the error. So, 



essentially that will be the error times the derivative of the output function times minus x 

i. 

It is essentially taking the derivative of this with respect to the w function. Once, you 

have computed the gradient of the error with respect to the weights, then we essentially 

just change the weights in the direction opposite to the eta times the gradient of this 

weights, where eta is the essentially the step says parameter. So, this was fine when you 

have a single neuron. So, what about the case when you have layered networks like this? 

(Refer Slide Time: 02:39) 

 

So, this is our standard three layer neural network. So, the first layer is essentially just 

the inputs. So, the second layer of neurons takes in the inputs and computes the output, 

these are called the hidden neuron that is we discussed in the last module and then the 

output layers finally, take the output from the hidden units, again do the appropriate 

transformation and give you the final outputs. So, here we will denote the hidden layer 

outputs by h and h is given us g of the weighted summation of the inputs and let me 

introduce the temporary variable here called t, which essentially is the summation of the 

outputs of the hidden units and f is finally, the transformation o of the outputs of the 

hidden units. 

So, one thing to note here is that, so I have used different functions g and o for the 

hidden layer and the output layer and typically for two class classification problems both 

g and o are logistic sigmoid as we saw earlier. So, g as well as o would be of the same 

form 1 by 1 plus e power v, but then if you are having a regression problem you can 



essentially use the same setup that we have here, except that o would be linear for the 

regression problems, so in which case o would be essentially just passing on the inputs 

that it is getting. 

So, suppose I have this multiple layers, how do I go about finding the weights of this 

standard three layer output? So, in some sense finding training rule for w 2 is not very 

hard. So, w 2 if you think about it, it is just like a single neuron network. So, I can just 

take all the weights that come to f 1 and then, essentially use the same rule that I used 

earlier here for a single neuron. I can use the same rule for training f 1, except that 

instead of x i I will be using the output h, so that is clear. So, for finding w 2 I really can 

just stick with what I did earlier. 

(Refer Slide Time: 05:15) 

 

So, I am going to write that here again just for clarity sake. So, I have rewritten this in an 

appropriate fraction for working with this multi layer networks. So, I am going to look at 

the gradient of the error with respect to a single weight that runs from the m'th neuron 

here to the k'th output neuron, this weight runs from the m'th hidden neuron to the k'th 

output neuron. So, this is essentially the k'th output minus the prediction given by the 

neural network. So, that is essentially our error times the derivative of the output 

function of the k'th neuron with respect to the input that it receives times the input that is 

coming on the m'th line, which will be essentially h m i. 

So, if you think about it that is exactly the update that we had here except that I have 

change the notation to apply to the two net, the second layer weights in the three layer 



network. So, now, the interesting part… So, this is fine, so this we can just get from the 

single neuron update. So, what we do about the first layer weights? So, let us see how 

you will do this, this essentially uses the very simple idea of chain rule from 

differentiation, I am going to take a very specific weight here. So, I would like to find the 

derivative of the error with respect to the first layer weight that runs from the l'th input 

neuron to the m'th hidden neuron. 

So, it runs from some l'th neuron to the mth neuron, so I am just looking at this one 

weight here, we are trying to find out what is the gradient of the error at the output with 

respect to that one weight. So, I can rewrite this as follows, so the derivative of the error 

with respect to the first layer weight is essentially the derivative of the error with respect 

to the output of the m'th neuron times the derivative of the m'th neuron with respect to 

the weight. 

So, this makes sense, because the weight to the m'th neuron affects the output only via 

the output of the m'th neuron, so it affects the overall output of the network only via the 

output of the m'th neuron. So, I can essentially apply the chain rule here. So, let us take 

this bit by bit. So, if you look at this, so you can see that this is immediately obvious, 

because this is the function we are talking about here. So, if you take the derivative of 

this with respect to any specific w here, so we will essentially get… 

So, if we take the derivative of h m i with respect to w m l, then you essentially going to 

get the derivative of g times the derivative of this expression with respect w m l which 

will just be x l i. So, this is the second term in the derivative. So, the first term in this 

derivative is the one that requires a little bit more work, so let us see how we will do that. 

So, I am going to try and evaluate that expression here, so if you think about it, so the 

different ways in which the output of the m'th neuron can influence the overall error is 

essentially through each one of the output neuron that m'th hidden neuron connects to. 

So, it can influence the error through this output or it can influence error through this 

output. So, we are essentially summing over all possible outputs k of the gradient of the 

error with respect to f k and the gradient of f k with respect to the output of the hidden 

neuron. So, you can easily evaluate the derivative, so the derivative of the error with 

respect to f k. So, if think about it, so this is the expression we have. 

So, the derivative of the error with respect to f k, so going from this expression 

derivative of the error with respect f k going to be... So, negative of y i minus f hat k x i, 



because we are taking derivative with respect to f k here. So, we do not have to worry 

about the further terms that constitute f k. The second term is concerned that is 

essentially looking at this. So, derivative of f k with respect to h m is essentially the 

derivative of o with respect to h times the derivative of the argument of o with respect to 

h which gives us just the weight w k m complex expression for this. 

So, before I put these things together to make things a little simple let me introduce the 

small notational thing. So, that it makes lie for little easier for us, so I am going to say 

delta and I am going to say delta k for the input i this essentially the error term times the 

derivative of the last layers output function and also define this term row m for the input 

i as the essentially the derivative of g with respect to w times the summation of w k m 

into delta k of i. 

(Refer Slide Time: 12:42) 

 

So, putting these together now we can write our expressions more compactly essentially 

we can say that dou. So, the error of the derivative of the error with respect to the output 

layer weights, with respect the w to weights is essentially delta k i times h m i, so 

likewise the derivative of the error with respect to the first layer weights, the weights 

from the input layer to the hidden layer is given by row m i times x l i. 

So, if you think about it, so this part corresponds to this and that comes from here and x l 

i is what is left out here. So, this expression look pretty compact and now we essentially 

have... So, you essentially update the parameters by w k m is just change by accept the 

gradient here and w m l is again change by the gradient that we are computed here. So, 



one thing I want to point out here that if you are function, the function g or your function 

o happens to be a sigmoid, then g dash is equal to essentially g of a into 1 minus g of e. 

And suppose you are using a time h function, because you want here outputs to run from 

minus 1 to plus 1, suppose then g dash it is 1 minus g v squared essentially this gives you 

the... So, you can see that the sigmoid functions have a very convenient form for the 

derivatives. So, one thing that we have to be careful about here is the fact that these are 

gradient following methods and therefore, and there is a good chance that will get stuck 

in local optima and there are many techniques for getting out of these local optima, but 

we are not discuss too many of them there one of the simplest one is of course, to try this 

with multiple starting stage, starting points for your weights and taking the other set of 

weights that gives you the best possible result at the end of some kind of 

experimentation. 

So, that brings us to the end of this module on training your neural network using back 

propagation. So, but this form of training has it is own draw backs will see what is that in 

the next module. 


