
Introduction to Data Analytics 

Prof. Nandan Sudarsanam and Prof. B. Ravindran 

Department of Management Studies and 

Department of Computer Science and Engineering 

Indian Institute of Technology, Madras 

 

Module – 06 

Lecture – 34 

Artificial Neural Networks 

Hello and welcome to this module on Artificial Neural Networks. 

(Refer Slide Time: 00:14) 

 

So, artificial neural networks, where a computing module in spite by biology. So, we 

have neural network architectures that have been proposed for a variety of different 

analytics tasks like regression, classification, clustering, feature extraction, etc. So, these 

architectures essentially are networks of simple computing entities and so this is like a 

very simple threshold entities that are connected together in the specific network 

architecture that give raise to complex computing functionality. 

Now, oscillate there has been significant resurgence in interest in artificial neural 

networks, especially under the domain of t networks about which we will see in one of 

the later modules. So, for this module and the discussion about artificial neural networks 

is concerned in this course, we will look at only the classification task and many of the 

ideas we talk about here for classification or generalizable to regression, like for while 



for the other kinds of analytics task we need different architectures and, but we are not 

going to cover that in this course. 

(Refer Slide Time: 01:22) 

 

So, the inspiration comes from biological neuron. So, let us not worry about the complete 

complex structure of a neuron, what we really have to focus here is on the input and the 

output. So, the neuron receive inputs from the dendrites or from the dendrite branches 

from other neurons and when the input signals is above a certain threshold, it is going to 

produce an output, that is going to be transmitted via the synopses to neurons that are 

further down the line. 

(Refer Slide Time: 01:54) 

 



So, these connections for the dendrites and synopses are going to be result in a very 

complex network and even though, the computing done by each element is very, very 

simple summation and thresholding. The sum total of this taken across the entire network 

and give raise to daily complex computations, which we will see. 

(Refer Slide Time: 02:12) 

 

So, the completing unit is something that is very simple. So, it is going to take a set of 

inputs x 1 to x n and it is going to compute some functional arm, it is function is very 

simply incredible and then it will produce an output. So, we will look at what this 

function is going to be in detail in the next few slides. 

(Refer Slide Time: 02:30) 

 



So, the initial module for this for a biological neuron was proposed by McCulloch-Pitts 

in 1943 it is called the McCulloch-Pitts unit, it is only binary signals, so 0s and 1s. So, 

either an input is active, then these cases are represented by 1 or if it is not active, in this 

case it is represented by 0 and the nodes also produced only binary results. So, the 

outputs could be either 0s or 1. So, the edges between these different nodes where 

directed, unweighted, they could be of two types that could be excitatory or inhibitory 

and again I can mentioned earlier, the transmit binary signals. 

(Refer Slide Time: 03:11) 

 

So, what is the computation that happens here? So, I let assume that the McCulloch-Pitts 

unit gets inputs x 1 to x n through n excitatory edges. So, these are positive edges and 

inputs y 1 to y m through inhibitory edges. So; that means, these are edges that could 

produce the depression in the functional arm could actually stop the functioning of the 

neuron. So, the assumption that was made is, if m is greater than or equal to 1 that is at 

least one inhibitory edge and if any one of the inhibitory edges is 1, so if there is a one 

inhibitory input then the unit as a whole does not produce any output, regardless of what 

the inputs x 1 to x n are. 

If none of the inhibitory inputs are 1 or if there are no inhibitory inputs at all, the unit 

computes the summation of x 1 to x n, let us call it x and if x is greater than the threshold 

that is specified for each unit, if it is greater than the threshold theta then the result of the 

computation is 1 as the result is 0. So, it is very simple, so essentially you can think of it 

as adding up all the inputs that come to the neuron and if the summation is greater than 

our threshold theta, your output 1; otherwise, your output 0. So, the inhibitory edges in 



some sense here acting act as a gating signal. So, if it is 1, the output is always 0, if the 

inhibitory is only 0 then the output is the result of the computation. 

(Refer Slide Time: 04:43) 

 

So, it is essentially the McCulloch-Pitts unit, it is implementing just threshold function. 

If the input is below theta you are going to see a output of 0, if the input is above theta 

you are going to see a output of 1, that this is essentially a step function. 

(Refer Slide Time: 04:57) 

 

So, what kind of computations can you do with this? So, you can actually do bulb of 

solve your familiar Boolean operations with the McCulloch-Pitts neuron. So, you can 

think of doing an AND operation, you have two inputs x 1 and x 2 and the threshold is 



set a 2. So, if only both x 1 and x 2 are one, so it will be greater than or equal to the 

threshold and therefore, the output will be 1 and for implement in a OR you can set the 

threshold that one. So, if either x 1 or x 2 is 1 to the output will be 1 after complimenting 

a NOT unit it can implement the NOT unit by having x 1 act as an inhibitory input. So, 

this circle here indicates an inhibitory input. 

So, if x 1 is 1; that means, they neuron and inhibitory output will be 0 on the other hand 

x 1 is 0 then the output will be whatever according to the result of the computation. But, 

we can see here that the threshold for this neuron set as 0 and that is for the output will 

be always 1 as long as there is no inhibitory input. So, if x 1 is 1 then the output will be 

0, x 1 is 0 output will be 1, that how we have implemented NOT function. Now, once we 

unable to implement this kinds of AND, OR and NOT then you know that you can 

connect neurons together and then implement any Boolean function that we want and is 

this what really we are interested in. 

(Refer Slide Time: 06:27) 

 

So, we are not really interested in that because we want to be able to do more complex 

classification problems, then we would like learn simple things like linear surfaces or 

more complex surfaces that is separate two classes. So, that is ((Refer Time: 06:45)) goal 

of classification we are looked at so far. So, in 1957 rosenblatt proposed a very simple 

extension to the McCulloch-Pitts module which we called the perceptron, the more 

crucial thing what the perceptron is that a it introduced weights at the inputs, crucial 

differences from the perceptron from the McCulloch-Pitts module is that the perceptron 

introduced weights at the input. 



And then it the output could be either a one or a minus one depending on whether the 

weight at some of the inputs is greater than threshold that one that is the computing unit 

with a threshold theta ((Refer Time: 07:23)) it. So, the output of the be around is one if 

the weight at some of the inputs is greater than or equal to theta is equal to minus 1 other 

wise. 

(Refer Slide Time: 07:34) 

 

So, what is the goal here in perceptron learning, when perceptron learning we are 

essentially trying to learn a hyper plane, trying to learn a separating surface as we have 

done in the past in the other classification problems, we are trying to learn the separating 

surface that can separate one class from the other. So, what would the classes we in our 

case, classes in our case would be plus 1 and minus 1. So, this essentially means if w i x i 

is greater than equal to theta, it essentially defines the equation of a hyper plane as we 

have seen at the previous modules. 

So, if this you can take the theta to the other side. So, we like w i x i minus theta is 

greater than or equal to 0. So, we have seen that was greater than 0 to some one side of 

the hyper plane if it is lesser than 0 it is on other side of the hyper plane and we are going 

to say that data points to one side of the hyper plane belong to class 1 data points other 

side of the hyper plane belongs to class minus 1. So, now, the question is given a set of 

training data that gives you the x x the vector x and the decide output y. 

How would we find these weights w i's such that the perceptron is actually implementing 

that hyper plane, implementing the right separating hyper plane. So, the weighted all this 



is follows, you start of the randomly initializing the weights to some value and then we 

look at the prediction that is made by the way. So, the prediction that is made by the 

current setting of the weights, let us called it o and the target is the two class of the data 

point x. So, with this, it will be plus 1 or minus 1 and likewise o is also plus 1 or minus 

1. So, your goal is to make sure that here perceptron output maxes the target value. 

So, the perceptron training algorithm has a very simple rule. So, at every presentation of 

an input point, we change the weights by an amount that is proportional to difference 

between the target value and the actual output produce times that the input on the 

particular it. So, w i changes by an amount that is proportional to t minus o times x i. So, 

eta here is a small constant may be 0.1 or 0.01 as called the learning data. 

So, one thing to note here if for a particular input x I will produce the correct output. So, 

the class is minus 1 and they produce minus 1, the class is plus 1 and they produce plus 1 

this expression evaluates to 0. You can see that this expression evaluates to 0 and 

therefore no changes in the weights will happen. So, essentially what happens here is you 

change the weights only whenever you make a mistake and that to you change the weight 

proportional to the input variable. So, if x i is say a small value say 0.1 or 0.2 then will 

be changes in the weight will be small and as for as the poster when x i is the large value 

let us say 1 or 0.95 and things like that then the change it be next will be large. 

So, this essentially because the larger the input variable the more important it is going to 

be in the production of the output at least the way we are set up this perceptron. So, that 

is essentially the simple training rule. So, whenever you make a mistake, you take the 

vector for which we have made a mistake add some small fraction of that vector to the 

weights. 



(Refer Slide Time: 11:14) 

 

So, this looks like a very simple rule, but then pack in 50's this perceptron’s created a lot 

of human cried the people saw that the perceptron’s by the able to learn from scratch 

trying to solve something which are considered hard learning problems and then they 

used the perceptron’s they were able to solve that, so much so you can see here the 

height was that they are going to build the computer that expects to be able to walk, talk, 

see, write, weight reduce itself and be conscious of it is existence, such the significant 

amount of height and it is always hard to live up to any height that this proportionate and 

to the actual effect that was achieve that point. 

(Refer Slide Time: 11:59) 

 

So, let us take a look let us just back and take look at what can of perceptron learning is a 



news paper article really true or what are the limits to the perceptron’s learning ability. 

So, here is a very simple perceptron here, so it has a two input variable x 1 and x 2 and 

that is the threshold of one and the weight w 1 is 0.9 and w 2's 2. So, if you look at it 

essentially it implements this straight line here, so everything above the straight line this 

light color regions belong to one class and the dark color regions belong to another class. 

So, we know that these are data which are linearly separable, you saw this in the case 

with SVM's. So, these are data that are separated by a linear hyper plane or the linear 

separating surface. So, all data points for which the w transpose x evaluate, so greater 

than x is 1 will get a class of plus 1 all those that evaluate to lesser than 1 and get a class 

of minus 1. 

(Refer Slide Time: 13:03) 

 

So, again let us go back and look at the simple logic function that we saw earlier. So, it 

can implement that OR. So, essentially OR requires you to have a hyper plane and this 

passing cares. So, everything to this side this become plus 1 everything to this side 

becomes minus 1 and likewise you can implement and so you can draw a simple hyper 

plane. So, everything to this side become plus 1 and everything this side becomes minus 

1 or 0, I mean depending on how you wanted to predict the output. 



(Refer Slide Time: 13:31) 

 

And let us look at another one, look at simple problem just like OR and AND they solve 

problem. So, Minsky and Papert in 1969 in a famous monograph called the perceptron’s 

showed that well a simple problem like XOR. So, where the truth table is given here is 

the inputs of the same output is 0, if the inputs are differently output of 1, the simple 

problem like XOR is not linearly separable, you cannot draw a hyper plane that separates 

these two classes. 

So, forget about walking, forget about talking and doing all those wonderful things that 

was claimed to news paper article perceptron’s cannot even solve this as simple problem 

as XOR is essentially says that two things are same, the output is 0, two things are 

different the output are 1 that we cannot recognize the similarity between this simple 

inputs like 0's and 1's that kind it do complex computations. So, once Minsky and Papert 

showed this, it is a kind of you know ((Refer Time: 14:36)) research into neural networks 

for a long time until there was revival much later. 



(Refer Slide Time: 14:41) 

 

So, perceptron’s can learn only linear decision boundaries that is the take away message 

here. So, that is make that is whole idea of neural networks completely useless, because 

they can learn only linear decision boundaries in case of SVM's we saw that we could get 

it to do all linear boundaries by going into carnal expansion this has something similar 

that we can do here. 

(Refer Slide Time: 15:05) 

 

Let us look at how we can change the representations and try to do something more 

clever. So, if you look at the original problem the XOR problem, so I have my inputs x 1 

and I have my input x 2 and now we can see that in this space the problem is not 

separable. But, let us look to do a simple transformation on my data points, so instead of 



looking at x 1 I will define my first variable as NOT x 1 and x 2 and similarly I will 

define my second variable as x 1 and NOT x 2. 

So, if you think about it, so we can now plugging different values of x 1 and x 2 here and 

see what the outputs will be and then you can see that when x 1 is 0 and x 2 is 0, the 

output is going to be 0, when x 1 is 1 and x 2 is 0. So, the output here will be x 1 is 1 and 

x 2 is 0, the output here will again be 0 and x 1 is 1 and x 2 0 the out here will be 1. And 

we know that 0 1 the output has to be 1, so that we get it here and likewise for the 

symmetric case this will be the output and so you can see that this is again going to be 1 

and when x 2 x 1 x 2 both are 1 again the output will be 0 0 and therefore, this is the 

resulting point. 

Now; obviously, this representation the data points are linearly separable. So, now, the 

task becomes one of finding the right representation, such that the data becomes linearly 

separable for the next level, next stage of computation. So, people realized this very 

quickly, so even though a single perceptron cannot solve complex problems like XOR 

which not linearly separable, he could actually stack layers of neural neurons and then 

have the first layer compute something that is simple. 

So, you can always compute NOT of x 1 we saw that earlier and also can be computed 

by a single neuron. So, you can this get have layers of neuron that exactly compute your 

features and of NOT x 1 comma x 2 and then have another neuron, which takes the 

output of this neurons combine same together and produces the output that you want. So, 

people very quickly realize that stacking this kinds of neurons into layers allows you to 

do more complex computation. 

In fact, it is easy to show that stacking this neurons into layers actually builds a universal 

function representation that learns to a represent any Boolean function, you see a 

combination of neurons. So, what is a problem, now we know how to solve this more 

complex problems, why did the research in neural networks pick up again. 



(Refer Slide Time: 18:06) 

 

So, the question here is when I start connecting all of these neurons into layers. How do I 

find the weights? So, perceptron learning algorithm make no longer work in this case 

actually does not work in this case and people were struggling to come up with the 

mechanism for training all these weights. So, you can see that the way of started putting 

these things into layer. So, that is one input layer and one output layer, so there is one 

input layer, there is one output layer and in between this you could have many layers of 

neurons, they are typically called hidden layers because you do not observe their outputs 

directly. 

So, now, we have this many, many hidden layers of weights and it is little hard to find 

out what this weight should be and so in the mid 80's around 83 an algorithm was 

proposed called back propagation which allow you to learn the weights of this we solve 

this hidden layers. 



(Refer Slide Time: 19:15) 

 

So, for the rest of the presentation, we will be looking at the standard three layer 

network. So, there is an input layer x 1 to x d and the output layer which will denote by f 

of x and one hidden layer of neurons. So, these take the inputs from the input layer do 

the weight at some do your thresh holding function and then produce an output and then 

the neuron and output layer will take all this outputs of the hidden layers take their 

weight at some and take the threshold or not and that produce the output, instead of using 

hard threshold we use a kind of a soft threshold like in order to do this competitions this 

is needed, so that you can derive more efficient training algorithms later. 

So, the output of a hidden units and it given by g of the bios term, this is the theta that we 

had earlier. So, instead of theta so it is going to call it b 1 and plus w 1 times x and the 

output of this will be note by h of x and the output of the final layer of neurons is given 

by some function o of b 2 plus w 2 times h of x. And so now, the goal here is to figure 

out what this w 1 and w 2 are going to be. So, this is called the three layer network, even 

though there are only two sets of weights that we have to learn. 

So, the layers here talk about the neurons here, so we use for each input variable we are 

same that there is separate neuron that is activating the hidden units. So, this is called the 

standard three layer network structure. 



(Refer Slide Time: 20:59) 

 

So, what are the different activation functions you can use? So, we already looked at one 

which is the threshold function, we can also have just a linear activation function that 

basically takes the summation of weighted summation of all the inputs and outputs as it 

is. We can also look at the sigmoidal function, sigmoid logistic function which takes the 

summation input and then squashes the input. So, that get lays between 0 and 1 and then 

there is a steep raised somewhere around the threshold. So, that it transitions rapidly 

from 0 to 1. 

When if you are interested in having signed outputs then you can think of using a 

hyperbolic tangent, where the outputs are going to taxation between minus 1 and plus 1 

and again around the threshold. So, there are parameters at control where the threshold 

would be and how steep the price would be. So, another transition function some time 

gives is this squashing function, which is 0 before the threshold and one at a certain 

distance higher than the threshold and in between you have a... So, linear approximation 

adds to the step function, this called the squashing function. 

So, typically in most of the neural network architectures that we look at will be looking 

at either the hyperbolic tangent or this, the logistic sigmoid or the linear activation, 

because these are different shape and this allows as to derive efficient training algorithms 

for the same. So, if you are doing a classification problem then the output layer could be 

the hyperbolic or a logistic sigmoid and if your solving a regression problem, the output 

neuron could be a in linear neuron. So, that you can do appropriate regression fit. 



The hidden layer almost always has to be a non-linear function and where the little bit of 

what you can show that if the hidden units have a linear activation, like you might as for 

not have them at all. And what is the function that is implemented is something which 

can be as well implemented by a single layer of neurons. And the next module we look at 

how you the exactly find out these weights given the assumption that they are working 

with the sigmoidal logistic function. 

So, the function for the sigmoidal logistic thing is given by f of net is 1 by 1 minus e to 

the power of minus net. So, that is the function and look at, given that this is the 

activation function how we are going to derive the weights of the two layer standard 

three layer you will get. So, that is in the next class. 


