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Now, we look at the case where the data is not so-well behaved as you wanted to be, 

right. Specifically the data is not separable, right, is not linearly separable. So, you look 

at the non-separable case. So, I am going to introduce some additional data points 

whatever have looking at so far. So, this is a non-separable case, right, linearly non-

separable case because some of my data points are really mixed up here, right. Now, still 

like we have large margin, but not only have I allowing data that is not separable, but I 

am also allowing data points to fall within the margin. So, its essentially two sides of the 

same coin, right. So, if I am allowing data to fall within the margin, so in some sense I 

am having the flexibility to make some kind of errors as well. 
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So, I essentially look at how far away am I from the margin, right in the long direction. 

So, I am going to denote these distances by which I am away from the margin by the 

symbol zeta, right, but we still have same constraints here, but now going back to our 

optimization problem, but I am really looking at here is, I am going to modify make 

constraints such that, so y i times x i times beta plus beta naught, right is really greater 

than or equal to 1 minus zeta i, but zeta I is some kind of slack variable that allows me to 

satisfy this constraint with some error in it. So, essentially if you look at this first data 

point that we drew here, if you look at the first data point I drew here, right. So, it has the 

slack of zeta 1, right and the second data point as a slack of zeta 2, right and this one of 

the really fairly large slack, but I still it is possible under the circumstances. This allows 

me to have a larger margin, right. 

So, if you think about it if I did not, even if this data point was not there, if I did not 

allow these kinds of data point appear in the margin, right. If I dint allow these things to 

appear in the margin, my classifier would actually have been here, right. My classifier 

would have been here trying to separate this x n from this o, right and margin would have 

been very small. In all likelihood I am fitting a noise data point here which is not an 

optimal thing to do, right. 

So, now I am allowing some amount of data points to fall within the margin, right. I am 

able to expand the size of the margin that I can have and I can also incorporate linearly 



the small number of errors that I have to make because the data is not linearly separable, 

right, but then I don’t want to this become arbitrarily large, right. I just cant say that hey 

it doesn’t matter you can have slack variable for every data point that we have and the 

slack variable can be as large as you wanted. I need to have a control on this as well and 

therefore I try to minimize that, right. So, this condition is sufficient for us to define a 

new problem now, but still one more condition that we need. So, we are really measuring 

zetas in one direction and not in the other direction, right. So, we have to be careful. So, I 

also need to add another set of constraints, let us say that the zeta have to be positive. So, 

that is the complete constraint optimization problem for us in the case where the data is 

not linearly separable. 

So, you have to minimize beta square, non-beta square plus the sum of the zetas that we 

are using subject to the condition that y i x i times for beta plus beta not is greater than 1 

minus beta i and zeta is greater than or equal to 0. So, what happens to our primal 

objective function now? So, what is that we need a component that corresponds to the 

actual objective function, and you need a component that corresponds to the constraints 

that we are using, right. So, the first part of it remains as it is, right, but then we have to 

add the SVM components that we are bringing in, right. So, this is the second part of the 

objective function and this is the first constraint, right and this is the second constraint 

and since these has to be applied to each and every data point, so you have the 

summation over all the data point you have, likewise here. 

 So, how do we go about deriving the dual in this case? So, just like we did earlier, so 

start differentiating the primal of the respective of various parameters. So, you end up 

with the same condition that we had earlier, and here you end up with the same condition 

when you differentiate with respect to the zetas, you end up with (Refer Time: 08:21) so, 

one condition for each i, right. So, alpha i equal to c minus mu i. So, I can put everything 

back into the primal, do some algebra and derive i dual which turns out look exactly like 

this, except that my alpha has to lie between 0 and c that you can actually see from that 

condition that we have there, right. Alpha i yi have to be equal to 0. That we already have 

as a condition. So, the reminder of the kkt condition that we have, I am just going to go 

through this very quickly because I don’t want to do the complete derivation here. 
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So, the remainder of the kkt conditions will be, this is what we had last time except for 

the zeta i part, right, but you also have (Refer Time: 10.15). It is essentially or initial 

constraint written in a slightly different form, right and third constraint here which is the 

original constraint with 1 minus zeta taking to the other side. So, what is that we notice 

from here? So, let us go back and let us do the same argument. If alpha is greater than 0, 

then yi x i transpose beta, beta naught is actually less than 1 at only, then this will be zero 

because right. So, that would mean that for the particular choice of zeta i. So, this goes to 

0. That would mean that this is on the wrong side of the margin, right or on the margin, 

right. If the zeta is on 0, then it will be on the margin and if the zeta is not 0, it will be 

within the margin. So, all the data points that is one side of the margin or all, right 

because again like last time, so beta depends only on those vector for which alpha is 

greater than 0, right. 

So, if the data happens to be on the right side of the margin, right then your alpha i have 

to be 0 as we saw earlier. So, those data points have no role in computing. So, this is 

essentially kind of takes us over the entire optimal separating hyper plane part, where it 

was linearly separable. So, we had a very easy solution, but when the data is not linearly 

separable, so we have to allow for the possibility of data points lie on the wrong side of 

the margin. So, when we do that, we can essentially take advantage of the fact and try to 

push our margin away by allowing data point which are correctly classified, but are 

within the margin is small fraction of such data points are permitted and therefore, we 



need to expand the margin a little bit. Therefore, we can come up with the solution. 

So, you don’t have to, at this point here don’t have to go in details of solving this 

optimization problem, but there are many powerful optimization techniques it have been 

developed that love you to solve these kinds of problems. In fact, SVM have let to the 

revival of popular class of optimization algorithms called interior point methods because 

these are very efficient in solving these kinds of optimization problems. They are pretty 

robust classifiers and are very widely used for wide variety of applications, but some of 

you will be probably thinking right now, but whenever I talk about a support little 

machines, people always tell me something about kernels, right. I thought to support that 

machine all about kernels and I have not talked about kernels at all at any point here, yes.  

So, the kernel idea is very crucial in support vector machines, and I will be looking at 

that in more detail in the next module. What you should remember is the basic 

optimization problem that you are trying to solve with support vector machine is the one 

of optimal separating hyper plane. So, in fact the kernel idea is called the kernel trick 

because it loves you to solve really wide variety of problems which is not easily 

amenable to linear classification by using a very powerful idea, but then the under lying 

optimization problem that you are solving is still this, the same optimization problem 

that on the boards so far in the last two modules. 


