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Hello today we will continue our lecture series in the topic of regression and in our last 

class, we primarily focused on, mainly ended, fine with the ideas behind subset selection. 

So, essentially we were talking about this problem, where you have a lot of input 

variables in, that you could use in your multiple regression model, how do you go about 

picking, which one should stay in the model and which one should go out. And in 

discussing that we would discussing a more broader topic which is, how do we measure 

how good a model is and how do we do things in our regression practice, so that we get 

good predictive accuracy and it is also useful for interpretation.  

In that regard, we will continue our lecture today and talk about two other small 

measures, which is the r square and the adjusted r square. The r square has atleast been 

introduced to you, you know you have an idea of where you can find that in your 

analysis. 

We will talk a little bit about that and we will talk about them more as other matrix of 

measuring, how good our regression is and then, we will move on to this topic called 

regularization, which has to do with how do you fine tune the datas, the coefficients of 

your regression model. 
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When we were discussing the topic of subset selection, which is, how do you go about 

choosing which variable should stay in the model. We said, we would go about making 

those choices based off of some metric, not of the individual variables, but of the model 

as a whole, correct and in that context, we primarily discuss the use of the p value from 

the f test that you do with your ANOVA. So, for instant I have copy pasted the same 

results from our examples that we took in our last class and so, this stable out here kind 

of… 

It is just a copy paste from that previous excel sheet and we were focusing on this p 

value primarily saying, this ANOVA is essentially a measure of how good the overall 

regression is, not individual input variables, but can we use that, can we use this p value 

as a guide to see which variable stay in and which variable stay out and that is the 

context in which we discuss the topic of best subset regression, we spoke about 

backwards, forwards and hybrid stepwise regression. 

But, today what we are going to talk about is, we talk about two other measures which 

are also available in which is, something that you could use and they primarily the R 

square and adjusted R square. So, the first thing that we are going to start by saying is the 

R square is not a very good measure, in terms of how the overall regression model is, 

especially in a multiple regression context. I will explain that in a second, what we mean 

by… 



Again just as a reminder, you know simple regression just means there is one input 

variable, multiple regression means there are multiple input variable. So, the R square 

essentially measures, is a measure of how much of your variation and here, you are 

talking about variations in terms of y, your output variable. So, how much if your output 

variables variation, the sum amount of variation and how much of that can I explain 

using my model and how much of that can I not explain using my model. 

So, if I take the overall variation of y and I break it up into two chunks, the amount that 

can be explained by my model, which is my regression equation and the amount that 

cannot be explained by that. If I put those two together I should get the overall variation 

in y irrespective of x. So, R square is nothing, but this ratio how much variation is 

explained by the model divided by the total variation. So, depending on the software that 

you use and the text book that you use, people usually have sum of squares total and that 

is the total variation and sum of squares model that is the model variation. 

But, I have also seen sum of squares regression as a proxy for sum of squares model and 

the sum of squares… If you take, if you say the total variation is sum of squares total and 

the model variation is either sum of squares model or the sum of squares regression, then 

the only the other quantity that is left is the sum of squares error or you know, as some 

people again call it the residual sum of squares. You might have seen it RSS or sum of 

squares error. 

So, this, your R square value therefore, is nothing… You can just basically look at your 

ANOVA output, even if your R square for some reason disappears. It is nothing but, the 

ratio of this number to this number, in which case I think that looks like it is about 0.8, 

0.9 invalid. To give you a little more mathematical intuition and also kind of giving you 

some kind of formulas that are used for calculating these three values. As I mentioned, 

the sum of squares total is just essentially the variability, in some sense the total squared 

distance of each data point from the grand mean, whereas sum of squares model is where 

you go to each, not each data point, but here y of i is each data point. 

We look at the deviation of each data point, actual data point from the grand average. 

With sum of squares regression or sum of squares model, you look at each predicted 

value y i hat. It is nothing but, what value of y are you predicting for each x and look at 

the deviation of that from the grand mean and finally, y i minus y I hat is how much is 



each data point deviating from each predicted value. So, that should hopefully give you 

some intuition us to how these values are calculated. 

So, now, going back to a bigger topic, as a metric to see how good a regression model is 

especially in a multiple regression, where there many variables, many input variables. 

This R square is not great, because R square by definition will only increase as you keep 

on adding more and more variables. So, we will be discussing this in great detail in our 

lectures on the bios variance dichotomy, which is going to come up, but the core idea just 

to kind of give you some feel for what we are talking about is that, if you keep on adding 

variables and if you keep on adding complexity, at some point you should be able to 

explain away all the data that you have or in another words, take the example where you 

have 10 data points and you had only 10 data points. 

You should technically be able to fit a line or essentially fit a function that will go 

through all these 10 data points. If you just choose, you know if you say I am willing to 

fit a 9th order polynomial, essentially if the fitted model can get more and more and 

more complex, then for a finite set of data point you should be able to explain the way 

everything, but that is not necessarily great. Because, when you go and try and predict 

with that model, you are not going to do too well, you just do kind of over fitted to the 

data by just constantly increasing the complexity of the model that you are using. 

Now, given that is the base and given that we were talking about this idea loosely when 

we in our previous lectures spoke about, how it is really important to try and figure out 

which of the subset of the variables you want in the model and you want to throw the 

others away. This R square does not help, because R square will never decrease as you 

keep on adding more input variable. So, let say I had a model with 5 input variables, I 

suddenly come up and say, maybe I should have the 6th variable and add it, it is almost it 

is definite that R square will increase and so, R square itself is not a great measure of 

how good a model is. 

Now, as we discussed you could definitely use the p value from the f test of the NOVA, 

but another metric that is also popular is called the adjusted R square and that is 

essentially nothing but, a modified version of R square that is shown in the formula here. 

So, it uses essentially to compute it, you can use your r square values and the idea is that 



n is nothing but, the number of data points and k is the number of independent variables 

that are there. 

So, for instance in our example, I believe we had 88 data points in the excel example that 

we were discussing yesterday. It is 88, I can infer that also from the total degrees of 

freedom and k essentially is 4, because we had four input variables. See, you can use k, 

the k will be equal to 4, so 88 and 4. So, the idea out here is that, when you use the 

adjusted R square, it kind of penalizes modules, where the number of variables you are 

using to explain it is too high. 

So, you can compare the adjusted R square of one model versus the other, where you 

used different numbers of input variables and yes, the higher your R square the better it 

is. So, if you can get a very higher R square, you are going to get a, you know that is one 

way of getting a higher adjusted R square, but not at the cost of, you know having too 

many variables. You want to keep k as small as possible and have a very higher R square. 

Notice that, there is a minus in front of the k, but this whole thing also has a 1 minus, so 

just be careful when you are trying to get an intuition of, how increasing or decreasing 

these values is going to effect the R square, adjusted R square. So, that is more just, 

again introducing you to the concept that there is, it is not the p value of the f statistic as 

we discussed in the best subset selection and stepwise regression, but this is the concept 

of adjusted R square as well and that is just one of the them, there are other metrics also 

that can be used to measure regressions, a regression model. 
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We now go on to the topic of regularization and you can also use the term coefficient 

shrinkage to express the same concept. What regularization does is also, you know as a 

huge over lap what you try to do with sub set selection, which is the core idea being how 

can I simplify my model in some sense. Because, I care about predictive accuracy, I care 

about interpretation, I do not care about just trying to get this function to go though all 

my data points. 

So, how can I simplify the model in some way and one way of simplifying the model is 

to use few variables, that is what we saw in subset selection. But, once you fix the 

numbers of variables, once you say I have fixed these are the variables that need to go in 

the module, is there some way to more smoothly determine the coefficients. We saw how 

the coefficients were being determined through an optimization process, but somewhere 

can I go directly in there and put in my constraint of saying, I do want you to optimize 

something, but at the same time I want you to trying keep it as simple as possible without 

kind of over fitting the data. 

So, in some sense the problem of regularization is a problem of saying I have an 

algorithm and I have a fixed number of input variables. So, I do not, I am no longer 

bargaining to throw variables out and keep them in, but is there some way of in my 

fitting methodology itself preventing this problem of over fitting or preventing this 

problem of trying to get the functional form to be so hardwired to the data, that it does 



not do such a good job of predicting n kind of, can I impose penalties upon myself to 

kind of over fitting. 

One way in which over fitting happens is, in problems where the problems of what we 

call as multicollinearity. Multicollinearity is the idea that many of my input variables are 

correlated with each other and when you have that problem, the coefficients themselves 

through a regular regression process can get, the determining their datas can be kind of 

poor. Meaning that, there can be a lot of variance between one samples to the next. 

So, it is like, ideally if I am doing a certain regression process and I take a sample of data 

and I then do this regression fit. If I take other sample of data and I get completely 

different set of datas, then that is not a very stable process and that tends to happen with 

least squares regression, when you have multicollinearity, meaning you have lots of 

highly correlated input variables. I mean take this example that we have on the slide, you 

have this idea, where you get this equation which says y is equal to 4 A plus 2 B. 

Now, imagine a word in which A and B was so highly correlated to the point, where they 

were practically the same variable. Then, a fitted model that says y is equal to 10 A 

minus 8 B should also a kind of give you the same results, in the sense that A and B are 

practically the same data points. They correlated to 1 and now assume that they are also 

equal and magnitude, the 4 A and 2 B, you can substitute B with A and you net getting 2 

A, which is the same net you are getting in the second equations. 

So, our both equations the same, now the idea with something like ridge regression is, 

you in cases like this, you want to have the simplest possible equation and you want to 

have the lowest possible magnitudes for your variables. So, you would be very happy 

with the y is equal to 2 A, I am just keeping it as simple as that or you can take it as 2 A 

minus 0 B. So, in addition to choosing which variables, you want to keep their 

magnitudes, the magnitude of the coefficients, you want to keep them as low as possible. 

So, if you have off setting coefficients, you are not making a regression equation that 

says y is equal to 10,000 and 2 A and you know, you know really large say 1000 and 2 A 

minus 1000 and B. Your kind of blowing things out of proposition, it will not generalize 

very well and so on and so forth. So, how can we achieve this? How can we achieve this 

goal of and really simple terms, not just allowing highly correlated variables to take up 

opposing sides and you know, have really large coefficients. 



And the way we will do that is, by taking a standard least squares minimization problem 

and that is essentially what have written as the objective punctuation here. So, the 

objective function here is no different for the ridge regression. At least the way have 

written it out here is no different than for least squares minimization, because all I am 

saying is let us minimize for each data point, the actual y minus the predicted y and the 

predicted y is nothing but, beta not plus beta 1 x 1 plus beta 2 x 2 plus beta 3 x 3, goes 

on. 

So, essentially j goes from 1 to p, meaning p is the total number of independent 

variables, n is the total number of data points, so you do it for each data point. You look 

at the deviation of the fitted value, the actual value to the estimate or the predicted value 

and the goal is, this deviation is what needs to be minimized. The square of this deviation 

is to be minimized in an ordinary least square regression, but in addition to that and what 

we do with the ridge regression is, we do this optimization with a constraint and the 

constraint can be written like this. 

The constraint said it is the subject to some beta, you take each beta which is each 

coefficients, square it and the sum of those square should be less than sum value s and 

that value s is essentially, it is not like you have particular number in mind. What winds 

up happening is that you can rewrite this optimization by just not having this constraint, 

but essentially out here, just adding minus lambda and summation of beta j square. 

So, this is kind of like, you might have come across this with like Lagrange multipliers, 

when you have a single constraint on the coefficients. You can just rewrite the objective 

function to have that constraint integrated in to the thing and essentially, it is like solving 

just the minimization without the constraint. But, essentially the solution to that is what 

will ensure that your data’s themselves are stable and you know, not taking really large 

values. 

Another way to achieve the same thing is, again even with the last lasso regression, this 

should not be ridge, this should be lasso. So, even with the lasso regression what you see 

is the same thing, you have the same objective function, but now it subjective to the 

constraint that the sum of the betas is less than some value s and again, out here you can 

just wind up rewriting your objective function. But, out here rewriting it does not do you 



too much good, because you cannot do the same trick as with standard calculus with 

LaGrange multipliers, where you have a beta square. 

When you have a mod beta, it just becomes computationally harder, but you know just 

like we saw in the simple regression case. If you got an excel sheet or a matlab, you can 

just do the optimization and put the sign as a constraint and as long as your optimization 

technique is good enough, you should be fine, you should be able to redo it. I hope that 

gives you some idea of regularization techniques and look forward to see you in the next 

class. 

Thank you. 


