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Inferential Statistics – Confidence Intervals 

Hello and welcome to our next lecture in inferential statistics. Today, we are going to be 

talking about confidence intervals. 
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So, statistical inference even in terms of classification mainly is discussed in terms of 

hypothesis testing and estimation. So, these are the two broad categories in statistical 

inference. And, hypothesis testing is something that we have discussed in good detail in 

this class; we have talked about single and two-sample tests – various tests. Today, we 

are going be primarily talking about estimation. And, you might notice that, almost any 

text that talks about statistical inference, talks about these two topics. And, some of them 

might be introducing estimation or confidence intervals before hypothesis testing. But, 

that does not really matter. Essentially, these are two sides of the same coin if you 

((Refer Slide Time: 01:07)) So, today, we are going to be talking about estimation. 

Now, the idea behind estimation is that estimation can be in terms of point or interval. 

What we mean by that is it is a same core concept as what we introduced with inferential 

statistics during hypothesis testing; which is that, we are interested in some population 

parameter. What we mean by that is that, there is this concept. So, the examples that we 

have used in this class are things like amount of phosphate in our blood, the height of 

tenth standard students in public schools in India. In all these cases, you define some 

population and you are interested in some parameter. More often than not, we would 

discuss the parameter being the mean. So, what is the average amount of phosphate in 

blood? What is the average height? But, it does not… That is just one of the parameters. 

That is the most common one. But, it can be other parameters. So, stepping back, we are 

interested in some population parameter. But, you do not know this parameter. It is like it 

is some truth that you do not already know. If you did know that, there would be no need 

for any of this or any of the statistics. But, what you do have is a sample. So, you have 5 

data points, 10 data points, 20 data points, 30 data points. Some sample from this 

population. 

And, what you are most interested is you are most interested about this population 

parameter. So, in hypothesis testing, you would hypothesize that, this population 

parameter is equal to 4.8 or 2.3 or it is less than 4.2. And then, you would go about and 

look at this sample and see if that is true or not. With estimation, you are not having any 

hypothesis; you are not having any hypotheses in mind in that sense. What you are trying 

to do is you are trying to take the sample. And, with point estimation, you are trying to 

come up with a single point estimate of the population parameter. And, that might seem 

fairly straightforward. So, for instance, let us say you are interested in the population 



parameter, which is the average amount of phosphate in blood. And, you took a data, you 

took some sample. And, that sample was about 20 data points. A simple point estimate of 

the population mean could be the sample mean. So, you take the sample of 20 data 

points; take their average. And, that is your best; that could be one of your best point 

estimates of the population mean. So, point estimate just means you are making as good 

a guess on the population parameter based on the data that you have. 

But, today, we are going to be talking… And more interestingly, this is what gets… This 

is what people are more interested in, which is interval – estimation in the form of an 

interval. So, this goes back to again the core concept with hypothesis testing, which is 

fine. You do not know the population mean; you have a sample mean; and, you 

acknowledge that, if you go to take another sample of another 20 points, you might not 

get the exact same value. And, both these values the first time around and the second 

time around might not be exactly equal to population mean. If it is not exactly equal to 

the population mean, then can I come up with some range around my point estimate. So, 

I have a point estimate, which is actually my sample mean; my sample mean is my best 

bet; let us say at my population mean. But, I acknowledge that, I might not have exactly 

hit target. 

The population mean might be a little higher or a little lower than my sample mean; in 

which case, I ask the question – can I come up with the range around this sample mean? 

By which means it is essentially like I am giving myself a margin of errors by which I 

am fairly certain that I have covered the population mean. So, that is the goal that we are 

going to embark upon. And, in many ways, it is the same map, because we have 

introduced hypothesis testing; it becomes a little easier, so that we can reason by the 

same logic in map that we have already discussed. So, let us do that. So, the core idea is 

that, let us take an example that we have looked at many times. So, which is that we 

might be hypothesizing the amount of phosphate in blood is equal to exactly 4.8. 

Now, we discussed that, in confidence intervals, you do not have this number; you do not 

come up with the hypothesis. You are only interested in coming up with some bounds 

around your point estimate. So, what you essentially do? One way of thinking about 

confidence intervals given that we have already introduced hypothesis tests is well, for 

different values of mu naught. So, let us say you have some dataset and you calculate 

some x bar. Essentially, 4.8 gets plugged in out here to calculate your z-statistic. If you 



are doing a z-test, you are given a sigma; if you are doing a t-test, you take an s; but, in 

neither case, that gets plugged in; n is again the number of data points. So, you get some 

z-value – some z value; that is out here. And, based out of that z-value, you calculate 

some probability; you calculate a p value. Now, the core idea with hypothesis test was 

that, if this p value is really small, you reject the null hypothesis. 

So, the question with confidence intervals – one way of thinking about is given that, I do 

not have some hypothesis, I ask myself the question within what range can my mu’s be 

such that I will calculate a zee such that I will get a p value, which I will not reject. I am 

just going to repeat that; given that you do not have a mu naught, you can think of a 

confidence interval as what is the range of values that mu could potentially be such that 

given that, for a given dataset, you will get some x bar, some sigma, some root n such 

that you will calculate a value z such that you will get a p value, which you will not 

reject. So, if you would not reject, that means you need to have some bounds. Suppose 

you start off by saying well, I am going to reject any p value less than 0.05. So, that is 

something you started off with. Now, given that you started off with that; then, is there 

some range… For a given data set, is there some range of mu’s such that you would not 

be rejecting this hypothesis test. And essentially, to compute that, all you do is just 

rearrange the terms out here. So, you keep the mu naught on… – the mu or the mu 

naught – I am using those two terms here interchangeably. But, you keep that on one side 

and you essentially move the terms to the other side to get this formula for confidence 

interval. 

So, typically, if you know the formula for the hypothesis test or the test statistic, you can 

just essentially rearrange it. But, the core idea is that, this is your point estimate, which is 

your x bar. So, for your best estimate of mu is your x bar; but, you create a margin of 

error or you create a range around it as plus or minus the z associated with this alpha. 

And, alpha here is that 0.05 that you said. Essentially, you said within a certain range. 

So, within that range and sigma and square root of n are the same. Another way a more 

formal definition associated with confidence interval is that, if we were to repeatedly 

take identical samples of the same size and build similar confidence interval bounds for 

each sample, then you are building a bound such that 95 percent of such confidence 

interval bounds will cover the true mean. Or, in other words, we are 95 percent 

confidence slash certain that the true mean mu is within our confidence. 
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So, for single sample tests, the process of creating confidence interval is fairly 

straightforward. I explain to you how in the z-test, it essentially just becomes a 

rearrangement of terms and this sigma by… This concept of sigma by square root of n 

essentially goes towards the z and then the x bar goes here such that it is a plus or minus. 

And, that is how you get the formula for that interval. The same core idea for the t-

distribution; the formula is no different, except that, the t-distribution gets also defined 

by the number of degrees of freedom; so, not just the alpha, but the number of degrees of 

freedom. And, in all these cases, mind you, because I am putting a plus or minus, this is 

the equivalent of the two-tailed z-test or the two-tailed t-test. You could also create a one 

-sided bound if you were interested. And, that would be again the formulae equivalent of 

having one sample test. Again it would be the same sigma divided by square root of n. 

The formula itself would not be different. But, the way this alpha gets used up will be 

different. Again it goes back to the core concept of how you would shade that region 

under the probability distribution. 

With the chi square distribution, that rearrangement is not obvious. To some extent it is. 

But, the plus or minus is not, because you do not have a plus or minus term; it is 

essentially like this sigma naught goes out here, the chi square distribution comes down 

here. But, the way we differentiate between the lower bound and the upper bound is by 

changing the alpha in the bottom of the chi square distribution. So, it is the same 

rearrangement; it is a same core concept of taking the hypothesis test and rearranging; 



that is, in this case, it would be to put the sigma naught out here and bring the chi square 

down here and you would have the same formula that you see here. But, you get an 

upper bound and a lower bound by looking at the 1 minus alpha by 2 and alpha by 2. 

And, by the way, this notion of alpha by 2 depends on how you define it. Now, if you say 

I want a 95 percent confidence bound; that means, you are left with 5 percent. And, if it 

is two-tailed test, that 5 percent gets divided into 2.5 percent times 2. That is how you get 

the alpha by 2. So, it really depends if someone starts by stating alpha and you know it is 

a two-tailed test; then, technically, the correct way to do this would not be to just have an 

alpha out here, but it would be to have an alpha by 2, so that you are being technically 

correct. And, the same thing goes for here as well; you will have an alpha by 2. Again 

the same core idea with respect to the z-test. If this alpha is more generic term that I have 

used out here. So, if somebody comes and says I need a two-tailed test; so, there is a plus 

or minus and the alpha gets divided by 2. But, if it is a one-sided test, that alpha can stay 

as alpha. So, depends on how it gets firmly defined typically. If it is a two-tailed test, you 

will represent it as alpha by 2. But, it is… Again if you look at it, it is a same 

rearrangement from your test statistic to create the confidence interval. 
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So, the same idea goes towards two-tailed tests. Just to give you an idea of how it works 

for a two-tailed test, I have given a single sample for the z-test, for the t-test and the 

proportional z-test. We have consciously left it out; that might be a part of your 



assignments that you could work on. But, the idea is the same. We are interested in this 

term. We are interested in the term x 1 bar minus x 2 bar. And so, we want to create a 

confidence bound around x 1 bar minus x 2 bar. If you remember this simple way of 

thinking about x 1 bar minus x 2 bar was to say to test the null hypothesis that x 1 bar is 

equal to x 2 bar. But, that is logically the same as asking the question – what is the 

confidence bounds around x 1 bar minus x 2 bar? And, seeing if that essentially covers a 

0 or not. Of course, this d naught is an extra term. 

Suppose you were interested in a hypothesis that looked more like this; if this was your 

null hypothesis, then you could – you would have this d naught being something 

nonzero; otherwise, d naught is just equal to 0. But, this is the idea. So, you are interested 

in some bounds around the term x 1 bar minus x 2 bar. And, again you would do the 

same logical rearrangement. This goes here and the bounds go around x 1 bar minus x 2 

bar. And, you are essentially creating bounds around this value. So, there is x 1 bar 

minus x 2 bar and what is your range around that; great. Again similar to the chi square 

test, the F-test is not so straightforward. So, I am including the formula associated with 

that out of here. You do the same thing that you did with the chi square test, which is you 

have the same s 1 square by s 2 square. That is your core upper bound and lower bound. 

But, you divide by this F. This F kind of comes down and you divide by that. But, the 

lower bound is 1 minus alpha by 2 and the upper bound is alpha by 2. Of course, also 

remember that, when this is a two-tailed test, the alpha that you see here becomes alpha 

divided by 2. If it is a one-tailed test, meaning you just had a plus or a minus; you can 

keep that as alpha. I hope that clarified this concept of confidence intervals.  

Thank you. 


