
Advanced Business Decision Support Systems

Professor Deepu Philip

Department of Industrial Engineering and Management Engineering

Indian Institute of Technology, Kanpur

Professor Amandeep Singh

Imagineering Laboratory

Dr. Prabal Pratap Singh

Indian Institute of Technology, Kanpur

Lecture 09

Tree Search and Alternatives in Decision Making Using Single Machine Sequencing

Problem (Part 1 of 4)

Good afternoon everyone, welcome to yet another lecture of Business Decision Support

System, which is the advanced course of Web-Based Decision Support System that was

plotted in the NPTEL MOOC's program. I am Dr. Deepu Philip from IIT Kanpur and

along with me this course is Dr. Amandeep Singh Oberoi and Dr. Prabal Pratap Singh.

And, we have been going through the process of Decision Support system and the type of

business decisions and we have also discussed, what is the importance of the corporate

decision making process and how the decision making process and the corporate

decision why it is important to be covered all aspects of it.

And, we have also seen the simple aspects of Monte Carlo simulation and how Monte

Carlo can be used for making decisions for where, you do not have clear values of a

parameters etcetera. And then, in the last class, I mentioned that now we will get into

what we call as the decision to the tree search or what we call as an Algorithmic

Decision Making approach.

So, today we are looking into one of the decision models or a Decision Making

Algorithm of tree search. So, today without any further delay let us get into the topic.

So, the tree search and alternatives, what are the alternatives of tree search in decision

making and we are going to use a single machine sequencing problem as an example

problem to demonstrate this. And, as I said earlier, this is part of Advanced Business

Decision Support System course.

I really hope that you have already taken the previous course or you have known parts of

the DSS and we also mentioned that in DSS, the major aspects are number one is UIMS

(User Interface Management System). Then, we have what we call as DBMS (Database

Management System) and then we have the third one is KBMS (Knowledge Base

Management System) and then the last one is we talked about is MBMS (Model Based

Management System). And, we have been seeing various models for decision making

that is what we have been seeing as part of this course and some other things will be also

caught out by my co-instructors.

So, without any further delay, let us first talk about what is a Single Machine Sequencing

problem? These are relatively problem to explain out of the concepts. So, if I put the

problem statement what it is? In a simpler sense, it is several jobs, number of jobs. It can

also be known as Works can be also known as Demands. Several jobs require the service

of a single machine. So there is a single machine or a single resource.

So, it can be a machine or a resource you want to call it. A single machine can be a

facility, a person, etc. So, several jobs or works or demands or etc. any of these falls into

the jobs category. They require the service of a single machine or a single resource.

It can be a facility, it can be a person, it can be drilling machine, can be a milling

machine, etc. And, within this, the first thing is, the main objective is Decision Making.

What is the main objective of decision making? Schedule these jobs in best possible

manner to optimize some given objective. So, you schedule these jobs in a sense with the

start time and end time and order in which, it will be processed in the best possible

manner. So that you can for the given objective can be optimized.

The other part of it is, there are many objectives in practice not just one. But that is

depending on the situation. Whatever is the situation depending on that is the objective

that is usable. Now, other point you should also understand that computationally solution

to single machine is demanding. Solution to the single machine problem can be

demanding.

You may require a lot of computing resources to solve this problem. And, the usual

approach, what do we do usually? The usual approach is develop all possible sequences

and then choose the sequence that fits the best objective. So, there are two words that we

have seen today quickly. One is Schedule and another one is Sequence. So, we will

discuss this in a minute, but first, the usual approach is develop all possible sequences

and then choose the sequence that best fits the objective.

So you develop all possible sequence. So this approach is known as Total Enumeration.

Get all possible sequences and from there, pick the sequence that best fits the objective.

Now, you have discussed two words Sequence and Schedule. What are those? They are

related to one another.

Sequence is the order in which the jobs will be processed on the machine. It will just

order the precedence which will be the first job, which will be the third job, which will

be the seventh job, etc. Schedule is when start and end times are integrated to the

sequence. So sequence is just the order, there is no start and end time whereas, in a

schedule it, is a sequence with a start and end time. So, the job 1 will start processing at

9 and finish at 907, job 2 will start at 908 and then finish at some other number, etc. that

is called as the Schedule. So Schedule and Sequence are this way related.

Then, we mentioned about the Total Enumeration. Total enumeration is where all

possible sequences are first developed and after that you choose a sequence that best fit

the objective. So, all possible combination for n jobs, let us say there are n jobs in the

system, you need 1, 2, 3, 4 etc. up to n. Then, if that is the case, then all possible

combination of n jobs will be n factorial. So, if it is 10 jobs, it will be 10 factorial,

depending on value of n, the n factorial can be really large, can go like crazy.

So, such kind of problems are known as NP complete or NP hard. So, this you might

have heard this term NP complete or NP hard or etc. So, in a simpler sense for us, what

does means is, such problems cannot be solved or you are unable to solve those

problems in polynomial times as the value of n gets large.

So, you cannot solve in polynomial times, as the value of n gets large, the time starts

growing exponentially not polynomial. So, that is the issue with such kind of problems.

So, as we said the aim here is to develop all possible sequences first and then choose a

sequence that best fits the objective and we told that is called Total Enumeration. So, we

are going to look into that and then go from there that is our plan for today.

So, now, to do this, we have to learn also about Tree Data Structure. What is a Tree Data

Structure? So, in simplest ways, tree is a Hierarchical Data Structure. So, hierarchical

data structure that stores information in hierarchical form is unlike linear data structures

like array or something data structure. So, this is hierarchical data structure that stores

information in the hierarchical form that is what a tree thing is. So, important things are

tree contains nodes. Nodes usually you can think about as data and connections you can

think about it as edges.

Edges is a graph kind of a term that we use that should not form a cycle. So, it cannot

have a cycle. The people draw tree in a multiple fashion but the idea is that a tree

contains nodes and edges. So if you represent a tree something like this, the easiest way

to represent a tree is like this. So, these are nodes and these are edges and the idea is that

you know, do not make things like this.

So, that you do not create a cycle in that fashion. So, now let us define the term node.

For this, I think you may all have studied this but I am just doing this for the purpose of

this course . So, we call node here in this course for the Decision Support System a

structure that may contain a structure, a value or condition or another data structure. So,

a node is a structure, it is a way to store data that may contain a value can have a value, a

condition or another data structure.

So, internally, we remember that we are using computers to do it. So, it is implemented in

that way node. Then, there is a word that you come across is called the Root. Root is the

top node of a tree for this is the 0 or the root node. Top node of a tree is called also

known as Prime Ancestor. That is a top node.

Then child is another term that you need to think about. Child is the node directly

connected to another node. A node that is directly connected to another node when

moving away from the root node. So, the word for this is called as Immediate

Descendant. So, a node that is directly connected to another node, when moving away

from the root node.

So, if you draw a diagram like this is the root node, having a node like this 3 and another

node. So, this can be said as a child. So, this is 1, 2, 3 and 4. So, the 4 is the child of 2,

the immediate descendant of 2. Then, let us call about what is parent.

It is the converse or reverse of child . So, that is the Immediate Ancestor. So, if I use this

diagram, this is our parent and child is for the 2 is the parent not 4 is the child.

Now, with this, let us continue a little bit more on the Tree Data Structure and more terms

and we will be using these terms when we are discussing it. So, it is better that we

understand this clearly.

So, leaf is the another word that we need to learn. It is any node with no children . So, an

example of it is, you have a node 0 and you have 2 nodes like this 1 and 2 and from here

you have 3 nodes 3, 4 and 5 and that is one node 6 and let us say 6 has 7 and 8 and 4 has

9. So, then, this is a leaf, leaf, leaf and leaf. So, the nodes that does not have any

children, there is no immediate descendant, then that node is called as a leaf node.

Then, internal node: a node with at least one child. There is at least one child, then that is

called as a internal node. So, in this case, you can say that 6, 1, 2 etc. are internal nodes.

Then, next word we are going to deal with this is Edge.

What is an edge? So it is a connection between 2 nodes. So 1, 2, 3 this is an edge, it is

connected by an edge. Then, the depth is, another word that you need to realize is the

distance between a node and root. So, if you try to find out the depth of 8, it is from here

level 1, level 2, level 3.

So the depth here is for 8 is equal to 3 . So, that is the depth of 3 from the root. Breadth

and depth are important because our algorithm also will be using these terms. Breadth is

the number of leaves, how broad the tree is determined by the number of leaves. So, this

is the breadth the number of leaves determines the breadth. Then, height, number of

edges or connections on the longest path between a node and a descendant leaf.

So, for any given node, you can take that and then go through the node, take the longest

path and find where that leaf is available. That descendant leaf is there from a node and

the descendant leaf, whatever is the longest path is called as the Height of the tree. Then,

the last term we need to do is Binary tree. You will hear this term many other times. So,

any tree with each node having at most 2 children, cannot exceed beyond 2 children, that

is it. So, it is called as the left and right nodes.

So, if you take a tree and then you have like this 0, 1, 2, 3, 4, 5, 6, this will have 7, 8 like

this. This will become a binary tree at most 2 nodes. So, there is the left and the right left

node and the right node.

So, now let us take a look into the algorithm how do we do the Tree Traversal or what we

call as the Search Tree. Tree Traversal is also known as Tree Search. So how do we

define this? It is a form of graph traverse or traversal process that visits. Why do we

need to visit for checking and updating? It visits for checking and updating each node in a

tree.

So, it is a form of graph traversal process and it visits each node in a tree and the purpose

of the visit is for checking and updating. So, each node in a tree data structure exactly

once, you will only do once, you will visit the node exactly once . That kind of a

traversal process is what we call as Tree Search or Tree Traversal.

Then, tree traversal is classified according to the order in which nodes are visited. So, we

classify the way the order in which, you visit the nodes that classifies the tree traversal

algorithm. So, broadly classified into two. Number one, it is called as the Breadth First

Search (BFS). Then, it starts the Traversal Tree from the root node and visits all nodes

of the current depth before moving to next depth of the tree.

So, the way to think about it is, this is the root node. Let us say it has 4 nodes or 3 nodes

1, 2, 3. It first visits all these 3, so this is the depth. Then, it will go to the nodes below it,

all of them like this. So, this is depth 2, 4, 5, 6, 7, 8, 9, 10, 11 then, it will visit the next

depth like this.

So, this is called as the breadth first where you finish all nodes in a one particular depth

and then, you move to the next depth, that is the Idea. The second one is called as the

Depth First Search, we call it as DFS. So, it starts the Tree Traversal from the root node

again. All begins at the root node and first visits all nodes of one chosen branch as deep

as possible before backtracking. So, what it does is, it starts from the root node and then

first visits all nodes of a chosen branch as deep as possible before backtracking.

So, what happens here is, an example of that, let us take, this is the root node and there

are as we said 3. So, the 3 is expanded, then we take this node in which this expanded

like this further. Then, it goes to the next one and let us say, this is where it stops. So,

first, it will go through in this fashion and reach this depth. So, this is depth 1, depth 2,

depth 3 and depth 4, then it will backtrack.

There is no other nodes, here it will backtrack, it will go to this node, go backtrack come

here there is nothing then, come back backtrack, here it will expand like this. So, that is

the process of depth first search. So, remember that it visits all other branches in the

same fashion. As I just explained to you, in the depth first where it goes down as deep as

possible and then backtracks and goes through this. This is the approach that it follows

in the other branches of this.

Now, we have seen the Tree Scheduling and Tree Search as such so not scheduling. So,

now, let us talk about the Single Machine Scheduling Example. So, this is an example

taken from the industrial scheduling textbook by D.R. Sule, PWS Publishing Company,

1996 and say example that is small enough for us to work out in the class and we can

understand.

So, there are 4 jobs, where j is equal to 1, 2, 3, 4 and each not here, we are using the

index. So, let us put use index i, it is job. So, then the processing times Pi sub i. So, the

P1 means, processing time of job 1 is 37, P2 is processing time of job 2 is 27. P3 is the

processing time of job 3 is 1, P4 processing time of job 4 is 28.

So, that is the total processing time of all the jobs. So, then, if we have to process all

these jobs without any delay in just 1, 2, 3, 4 then, the sum total of this. So, that is 9 plus

7 is 16, so this is about 93. The total duration, time required for doing all of this is 93 as

such. The due date means, the date at which you have promised the customer that you

will deliver the job. For job 1 it is 49, job 2 is 36, job 3 is 1 and job 4 is 37 and there is a

penalty weight that is given.

Penalty weight means, if the job is delayed by x number of units, then the penalty weight

is multiplied with that to find out what will be the penalty that you will be paying to the

customer, The other things you need to remember is among the 4 jobs, anyone can be

processed in any position in a sequence.

So, what we have here is, let us say, we have a single machine, let us say it is a drilling

machine . So, the jobs arrive into the system like this and then, they come in and then

they get drilled and depart, that is a single machine . So, you have sequence position,

your 4 jobs means your 4 sequence position 1, 2, 3, 4, like this. So, 1 means, the one that

will be processed first, 2 is the second, third, fourth, etc.

So, you can do like this 3, 2, 4, 1, etc. That means, job 3 will be processed first followed

by 2 and then 4 and 1, etc. That is the idea . So, these are the sequence positions. That is

what we want below. Then, if a job is delayed beyond the promised due date, the loss is

obtained by loss is calculated by multiplying the duration of the delay by penalty weight.

So, for example, if job 1 got finished in 50 days - lateness late equal to 50 – 49 that is 1.

The loss is equal to 1, which is a delay multiplied by 1, which is this is the Li the penalty

weight. If job 2 got finished in 40 days, that is the case the lateness is calculated by 40 –

36 that is 4. So, the loss is calculated as 4 times 5 is 20. So if job 1 got laid by 4

because the penalty weight is 1, it will only be the loss will be 4, but if job 2 got delayed

by 4, then the penalty weight will be, total loss will be, 20 because of the penalty weight

of 5 .

So, let us denote the loss as W. We use the letter W to denote the loss in the system . So,

I hope you guys have understood what we have just discussed here. So, we talked about

what is a Single Machine Sequencing, we talked about what is a Tree Data Structure and

the roots and the nodes and child parents and the leaf internal node the depth, breadth,

height, etc. All those aspects of tree we have discussed. And then, what is Tree

Traversal, how to the traversal processes visits each node in a tree exactly once for

checking and updating and there it is classified into two, the Breadth First and the Depth

First.

And, what Breadth First does, what Depth First does, we discussed that and then we just

talked about what is a Single Machine Scheduling example and what it looks like and

once that it is done and what is the loss and how the loss is also calculated and loss is

denoted by W. Now, with this our job is to solve this problem, the Single Machine

Scheduling example problem by total enumeration. So, what we will do is, solve the

Single Machine example by total enumeration. What is total enumeration? So, we

already discussed in total enumeration is that we just here we visited develop all possible

sequences and then choose a sequence that is best fit the objective .

So, this approach is known as the total enumeration. So, we are going to develop all

possible options, all possible alternatives and choose the best one. The best one is the

one, that has the lowest width. So, what is the best one here? What is that one? Sequence

with lowest value of W. The lowest value of W will be our the best sequence in this.

So, that is what we are going to do as part of today's example. So, we will start

enumeration in the next part. So, I really hope you guys will follow this enumeration with

pen and paper because this is not very easy to understand. So, I will work step-by-step,

so it will be easy for you to understand.

So, we will take a small break and we will start the total enumeration in the next session.

Thank you.

