
Advanced Business Decision Support Systems

Professor Deepu Philip

Department of Industrial Engineering and Management Engineering

Indian Institute of Technology, Kanpur

Professor Amandeep Singh

Imagineering Laboratory

Dr. Prabal Pratap Singh

Indian Institute of Technology, Kanpur

Lecture 31

Tuples, Sets & Dictionaries in Python

Hello everyone, I welcome you all to the lecture series on Advanced Business Decision

Support Systems. I am Doctor Prabal Pratap Singh from IIT Kanpur and we are

discussing the fundamentals of Python programming language.

So, till now, we have discussed data types like Numbers, Strings, List and we have also

seen the control flow statements like for Loop, While loop, if, Elif and Else statements.

Further, we have also seen some Syntactic sugar like list comprehensions. And now

today, we are moving to our next data types that are Tuple, Sets and Dictionaries in

Python.

So, the very basic agenda for today is talking about the advanced Data Types. These are

useful when we need some few special properties which are not available in our general

purpose array like list. So, as you all know that, when we discussed list, we saw that the

content of the list is mutable that is, we can alter the content whenever we like.

Also, these lists are ordered, so they all have indexes, each index have a value, but

sometimes, we don't want our things to be ordered or we sometimes want that the

content of some array should not contain any duplicate values or we may want to have

the immutability property in our arrays. So, when these are the requirements, then we

need things like Tuple, Sets and Dictionaries.

So, let us start with Tuples. So, tuples is also a kind of Sequence data type. And, we can

initialize tuples using parenthesis or the tuple function. So, we will see in our Visual

Studio Code how to initialize a basic tuple but for example, if we want to say first tuple

let us say, this is our variable and it can be initialized by just writing this statement or

writing (2, 3). So, this is our basic tuple which contains two elements 2 and 3.

 So what if only one element is present in a tuple? So, in those scenarios, this is a special

scenario for tuple. So, single element in tuples need a comma to inform the interpreter

that the tuple is present and that we need a tuple data type. So, what we mean here is, if

we let us say, this is our second tuple. So, if we just write 3, so this is not a tuple

interpreter we will think of it as a different kind of data type, but if we write this as 3

comma under brackets, brackets are these are the parenthesis. So, now interpreter will

see this as a Tuple.

So, this is a special property to initialize a single element in a tuple. And, slicing of

tuples is possible. So, what this means is that Tuple data type is ordered. So, since we

are talking about different characteristics of tuples, so let us write down the major

characteristics. Major characteristics of tuples are: Immutable data type.

So, what does it means is any element cannot be modified but we can add or remove

elements from the tuple. The second major property is it is Ordered. Therefore, tuples

have indexes. The third property is Multiple data type. So, this property is similar to

what list has that is, we can store multiple kinds of data type in a tuple.

Fourth major property is about Duplicates. Since, tuples are ordered, so they have

indexes. Therefore, tuples can hold duplicate values. So, what does this mean is let us

say, we have a tvar_3 xyz string and then again 3, then 4, then 5. So, now we can see

here that, this tuple is holding a number a string and a duplicate value also because we

can assess all these elements by its index numbers.

 Further, tuples have a distinct property known as Tuple Unpacking. So, we can store

individual values and can assess them directly. So, we will see an example by coding it

on our VS code regarding Tuple Unpacking and where it is beneficial. And, usually we

can use tuples when we require immutable list. So, let us switch back to our VS code.

 So, this is our lecture and we have already created a directory. So, we can now open our

VS code here and we can create a new file and call it tuples dot py. Now, as a customary

thing, we should create our environment here. So, let us create our environment using

python m vn tsd _ env and now it has been created and we need to switch it. So, now our

VS code is also using the same environment and we can change the panel position to

right.

 We need to activate this environment. So, now let us start coding. So, we will first

import os and then we will write our command to keep using this clear screen feature by

using the cls argument. Now, let us create a new tuple. So, we can see the data type of

this tuple by using type command on first_ tuple and it is showing that this data type is of

class tuple.

Now, what if I just overwrite this first tuple = 22 only and now check the same thing and

now it is showing that it is of class int. So, that means that, just using the parenthesis

doesn't define a tuple to interpreter. So, a single element tuple can be defined by let us

create a new variable t and we can check the data type of this as well by using the type

function on t. So, by just using this comma, the interpreter can understand that this is a

tuple. So, for creating a single element tuple, we should use this syntax.

Now, next thing we can use is, we can see how to add an element to a tuple. So, we can

update our first tuple by using first tuple plus. So, this is a simple addition operator which

will add things to our tuple. We can either add a string like sample or we can add a

number like 45. So, since we have changed our first tuple to some integer value, so we

first need to rerun this line.

Now, it is again a tuple. So, we can run this addition and now you can see that, our first

tuple has been updated with a string and a new value and we can. Tuple has no append

options. So, we can check the slicing features of tuples. So, let us get two values from

this first tuple by using our slicing notation and from start to the second value.

So this will print the first value and the second value which is 22 and 23. We can also get

a minus 3 to minus 1 will give the negative indexing.

So, let us move to our next data type which is a Set in python. So, we have seen list

which is a general purpose array and tuples which holds immutable data type. Now, we

can see what are sets.

So, Sets holds immutable data and it cannot contain other mutable python data types.

That means, in a set, we cannot hold list tuples etc. because they are not hashable. Since,

a set does not have its own indexing system so it cannot hold any other data type that has

its own indexing system. So, next important thing is, there are no order of items in a set

which means, that every retrieval action will give the contents of Sets in a different

order.

Another important thing is, we cannot use index of the content to retrieve the data. So,

how will we able to retrieve the data? We need to use loops on Sets to get the contents

and special property of Sets is that it cannot hold duplicate values. So, Sets are nothing

but the mathematical set theory operations which usually we perform on different kinds

of data Sets. So, like mathematics in python also, there are different operators for Sets.

So, these operators available for set data type are, first is Union operator and we can use

the pipe character available on our keyboards usually above the enter key.

The second is the Intersection operator and to perform intersection operation, we can use

this ampersand (&) symbol. The third is the Difference operator which could be either

minus or you can say, hyphen (-) and the last is the Symmetric difference. This is the

caret symbol and all these operations can also be performed using their associative

named function like dot union, dot intersection, etc.

Further, there is one more special keyword available with Sets is the Frozen set. So, what

it will do is, it will not change the contents of the set and we can use different functions

like is disjoint to check whether two Sets are disjoint or not.

So, let us again switch back to our code. So, let us first see what are the different ways to

initialize a set. So, to initialize an empty set, we can write m set = we can use this

function and we can check the contents of em set and its type also. So, you can see it is

using the class set.

Now, the next basic operation is how to add an element in set. So, we can add an element

to this empty set as well. Right and we can print the contents and you can see that, Sets

will be denoted by the interpreter using these curly braces and we can also initialize a set

by using these curly braces as well. You can say, 12, 14, 16, 18 this is also a set. So,

these are two different ways to initialize a set and now let us roll a simple die and do

some experiments. So, let us say, we are rolling two dice and we are recording the

outcomes in two different Sets.

So, dice 1 have reported 2, we are using the 6 phased dice so 2, 4 and 5 phased dice two

has reported 1, 4 and 3. So, let us see how to perform different operations which we have

discussed earlier. So, to get the intersection, we can write print using f string intersection

of dice 1 and dice 2 is dice 1 dot intersection dice 2. So, if we run this statement, we can

see that the interpreter is saying that the intersection of dice 1 and dice 2 is 4 and we

know that intersection means the common things that occurred in these two Sets.

 So, the only common thing is 4. And, we can also do a union operation by doing dice 1

dot union dice 2 which reported all the elements without using the duplicate element, so

1, 2, 3, 4 and 5. The interpreter is not reporting 4 two times, it is only reporting 4 ones,

so this is the property of sets that it will remove the duplicates and programmers often

use this important property while coding at different scenarios. We can also see the

symmetric difference between these two sets by using dice 1 dot symmetric difference

dice 2. So now 1, 2 and 3, 5 because we have removed the intersection element from

both the sets. So, this is how we use different properties of Sets in Python.

Now, let us move to our next important data type. So, Dictionaries is a very important

data type because until now, we have seen List, Tuples, Sets, Strings. So, first we saw

strings and we saw that each content of the string is having its own index, similar thing

was with the list, it was having its own index tuples also and all these indexing system

utilizes the integer number of indexing and these indexes were provided by interpreter.

So, these are actually the locations for the programmer and they are the references to

some locations in the memory sets had no indexing system because it has this property of

being unordered but here the problem arise when the programmer wanted to use a named

key value pairs in while programming because most of the data contains things that are

associated with other things that has its own names. So, to accommodate all these

requirements, the developers introduced Dictionaries in Python.

So, Dictionaries contains key value pairs and these are mutable data containers. In earlier

in versions, before I think 3.6 earlier versions of Python provided unordered dictionaries

but now dictionaries in latest versions are ordered. Further, we can initialize Dictionaries

using curly braces. You may say that Sets are also initialized by curly braces but here the

content distinguishes between Sets and Dictionaries by the interpreter.

 So, key value pair notation distinguishes it from sets. So, basic dictionary like

𝑓 − 𝑑𝑖𝑐𝑡 = {′𝑛𝑎𝑚𝑒′:′ 𝐽𝑜ℎ𝑛′, 𝑙′ 𝑜𝑐𝑎𝑡𝑖𝑜𝑛′: ′𝑈𝑆′}

So, this can be a basic dictionary which we can initialize by using these curly braces and

this dictionary contains two keys which is Name and Location and each have its own

associated value which is the actual name of the person and its location. So, now keys of

a dictionary can be of any type like int or string Associated values of dictionaries can

contain any sequence or non-sequence data type. So, this the value of a particular key let

us say this is a key and here we need to fill a value.

So, this value data type can either be a list or it can either be another dictionary which

will make it a nested dictionary or this can also be a set. So, this way this is very general

purpose and we can create as per our requirement. So, dictionaries are very useful and

there are many ways to iterate over dictionaries. So, let us now again switch back to our

VS code and see the benefits of dictionaries. So, first thing again we will see how to

initialize empty and filled dictionaries.

So, empty dict. This can be initialized by using this dict function. Now, you can see that

interpreter is again showing that, an empty dictionary is shown as just curly braces which

is similar to sets but if we use the type statement on this empty dict and we can see here

that, it is of class dict. So, this is different from sets. Now, let us create a short example

of inventory management and use this part inventory variable to fill the quantity of

inventory in a warehouse for let us say, 4 different parts.

So, part 1 contains 23 entities. Part 2 contains 56. Part 3 contains 65. Part 4 contains 77.

So, when we run this and now in the terminal, we can print the content of this dictionary

by just using the variable name and we can see here that, part 1 is associated with the

quantity.

 Similarly, other parts are also associated. Now, this is the useful thing that until now, we

were using integer indexing to locate our elements but let us now extract our contents of

this dictionary by using their named locations. So, we can write part inventory and let us

check the inventory of part 4.

So, we will use this square bracket notations and we will only write the name of this part

which is a valid index already available in our dictionary. So, it will print the output 77

and we can also change this by just using part inventory, part 4 equals to 110. Now, if

you again run this statement, it will show that the content of this dictionary element has

been changed which shows that this the dictionary is mutable.

So, we can write here mutable property. Now, how can we assess all the elements? So,

we have already learned about the control flow statements like Loops, For loop and other

things. So, let us write a simple For loop, for part, in part, inventory print part. So, just

to refresh the for loop, this is the keyword, this is the dummy element in which, all the

contents of this sequence data type will come one by one and then, we can use this

dummy variable to use it as per our need for our computation. So, here we are not using

any computation, just printing it.

So, let us see what happens here. So, we wanted to print the complete dictionary

elements one by one but what happened is, the for loop is printing these four things part,

one part, two part, three and part four which are the indexes of this dictionary. So, this

means that, when we simply try to assess all the elements like, the keys and its associated

values, this is not the correct way of assessing it. Why? Because whenever we try to

assess a dictionary, the interpreter will give only the keys of the dictionary as a iterable

sequence data type. So, here part inventory is only receiving the keys as a sequence data

type.

Now, to assess the complete values, we need to do something else. So, we can write part

comma num in part inventory dot items. And, now if I print. So, now we can assess both

the elements, the keys and the associated values. So, what changed here is, I used items

method on this dictionary which is available by default. So, this will create actually a

tuple and here we are using the tuple unpacking.

So, let me just first show you how tuple unpacking works. So, let us say, the demand is

67, 34 and 43. Now, we know that, this is a tuple and if we just write this as d1 comma

d2 comma d3, since we already know that, there are only three values that we need to

unpack from the sequence data type. So, we created three new variables and we are now

writing here as demand.

Now if you print these three different values d1. So, now our d1 contains 67 and d2

contains 34. So, this is one by one mapping. So, this is called tuple unpacking and in a

single line, we assigned three different values to three different new containers d1, d2

and d3. So, this is the same thing that is happening here.

We are using two different containers because we know initially that our dictionary

contains keys and values and when they will unpack using these items, it will give a

tuple with two different values. So, just to show you, we can also write part inventory

dot items.

So, these are giving class of dict items and it is giving tuples right and on this sequence

data type the list of tuples, we are just using this for loop. So, this is how we can assess

all the elements by using tuple unpacking in dictionaries.

Next thing is, how to add an element to an existing dictionary. So, we already have this

part inventory dictionary. Let us use it and create a new part as 5 and assign the inventory

as 78.

So, this should add a new element in our part inventory. Let us see part inventory. So,

now we have 5 parts, we have added one new part also, we can remove a part by using

del command on a particular index of part inventory. Let us again use part 5. So, this

should have deleted our part 5 from the inventory dictionary. We can again see, now

again, we are back with 4 parts only in our dictionary.

One more thing, we can use is, let us create one more dictionary. So, we are now

creating a new dictionary for our part demand and let us write part 1 as 35. So, there are

35 units that are needed for part 1. Part 5 is 89. Part 4 is 32. And, part 9 is 21.

Now, we can merge these two dictionaries into a new dictionary named as part details by

using an asterisk operator which is available on keyboard as this. So, if we use part

inventory and the same operator on part details, this will now unpack these two

dictionaries into this new dictionary.

Let us see the contents, Part demand. Okay, details are not defined. This is part demand.

We need to first initialize this as part demand and then run this. Now, content of part

details. So, our part details contain part 1 which was available.

Part 2, part 3, part 4, part 5 and part 9. Now, if you see these two initial dictionaries

closely. So, part 1 was originally 23 and part 4 was 77. And, this dictionary also contains

the information about part 1 and part 4. But this was the information regarding demand

and this was information regarding inventory. Now, the programmer merged these two

dictionaries into one which removed the initial information about part 1.

Because we know that, these dictionaries will not contain the same keys multiple times.

So, that is why, the information regarding part 1 gets overwritten and initially it was 23

but our final part details dictionary contains the part 1 information as 35. Similar was the

case with part 4, which is 32. So, this is an important property and we can do one more

thing is, we can check the content of dictionary using in operator. So, let us say, the

programmer wants to see whether part 11 is in the part demand or not.

 So, we can write part 11 in part demand. So, this is a conditional statement and it will

be either true or false. So, it is showing false because there are no keys with the name

part 11. So, I hope that these three important data types in python are clear now and we

will keep on using these important data types in our further lectures and next we will try

to see a very important python feature that is known as Functions. So thank you and we

will meet in the next lecture. Thank you.

