
Advanced Business Decision Support Systems

Professor Deepu Philip

Department of Industrial Engineering and Management Engineering

Indian Institute of Technology, Kanpur

Professor Amandeep Singh

Imagineering Laboratory

Dr. Prabal Pratap Singh

Indian Institute of Technology, Kanpur

Lecture 26

Python Programming Language

Hello everyone, I welcome you all to the lecture series on Advanced Business Decision

Support Systems. I am Dr. Prabal Pratap Singh from IIT Kanpur and I will be conducting

the practical aspects of the Decision Support Systems by creating all the Decision

Support Systems using the Python language. So, today we will start from the very basics

of what Python programming is and more to that what is actually a programming

language? Then, we will move to Python programming language.

So, let us start with the agenda of this lecture. So, first we will see what is Python

programming language, then after getting to know the very basics of this language, we

will move towards what actually is a programming language.

So, that we can understand from where how many kinds of these programming

languages are there and how python is different from those. Then, we learn about the

elements of these programming languages like, what are the components of a

Programming language. Then, we will try to see what are the different kinds of

Programming languages by classifying them on various basis, mainly on the basis of the

paradigm these programming languages follow. Then, we look at what compilers and

interpreters do to run a code successfully on a particular system.

On a system what is the role of these compilers and interpreters? Finally, we will again

look at the python language and we will try to see how these different things like

Elements, Classifications of these programming languages. So, where does Python

language stand in all these classifications and is it interpreted or is it using compiler

behind the scenes. So, starting with what is Python programming language.

So, Python is an Object-Oriented high level language with dynamic semantics. Its high-

level built in data structures, combined with dynamic typing and dynamic binding makes

it very attractive for rapid application development as well as for use as a scripting to

connect existing components together.

Now, after reading this statement you might be wondering, what are all these words like,

what is interpreted? What is object oriented? what is high level and what is dynamic

semantics? So, we will try to unwind all these terminologies in the next slides. So, that

we can understand what is first a Programming language and then we will try to

understand what the whole statement tells us about Python. So, this is a statement given

by the developers and maintainers of this language. So, let us move forward.

So, let us start with the very basic concept, what is a Programming language? So, first of

all, it is a system of notation for writing computer programs.

Now, what is a computer program? So, what is this? This is nothing but set of

instructions to a computer to perform a desired action. So, this is the most basic definition

of a Programming language that, it is a system of notations for writing various computer

programs. So, the next thing about a computer programming language is that it can be

textual or it can be graphical. Now, textual means that the whole source code is using the

text form like, the Natural language or the Machine Code language. So, it is using only

those things whereas, in a Graphical language, we can use entities and links between

them.

So, this is like the most known languages or textual in nature like C, Kobold, Python,

etcetera. However, Graphical languages manipulate the program flow using visual

elements. The next major thing is that the major components of a language are two, first

is Syntax, second is Semantics. So, you may ask, what is the Syntax? So, these are

nothing but the rules that govern two compilers or interpreters that the code is

grammatically correct. However, semantics shows the meaning of code.

So, this is the compilers or interpreters also check the meaning of these four components.

Source code during compile time or sometime, you may be wondering that, what is a

Compiler or Interpreter? So, we will look about these two tools in the other slides, but

for now, you can think of it like, as a tool that checks whether your code is

grammatically correct and it has a valid meaning for the computers to perform your

actions.

So, the last thing about programming languages is that, Programming languages are a

subset of Computer languages. So, what does this Statement mean? It says that there are

different kinds of Computer languages, Programming language is one of the kind and the

other kind is a Markup language. So, a programming language tries to define some

actions to a computer, whereas, Markup languages are usually used in the domain for

creating documents and maintaining all these documents like, a very popular Markup

language is a LaTeX.

So, we use this kind of language to create various kind of documents, whereas

Programming languages like Python, JavaScript, C, these are those kind of languages

that try to define some actions for this processor to do.

So, next we will try to see, what are the basic Elements of a Programming language. So,

first is the Syntax, as we have looked at earlier that, it contains the possible combination

of symbols and text that form a grammatically correct program. Semantics is the next

basic element. So, it shows the meaning of a language.

So, there can be two kinds of Semantics like, Static semantics. So, the tool like Compiler

or Interpreter checks during the compile time, whether all variables are declared or not

before using them. So, what do we mean by this statement is like, when we try to create a

Source code, we tend to initiate different kind of variables to store different kind of data

type.

Now, if we for some programming languages, we need to first declare the variable, then

we need to initialize the variable. So, if we do not initialize a variable and directly try to

compile it, then we may get an error by the compiler because the compiler does not know

that a kind of variable exist in the system.

So, this is the Static semantics. Dynamic semantics also happens like, when we are

running the code and if we are getting when we get a runtime error, then usually it is a

check by the Dynamic semantics of the code. The next element is the type system. So, as

I just said, that Programming languages need to classify different values into data types.

For example, let us say, we have a bucket of fruits and the fruits cannot be a decimal

value.

So, let us say, we have two oranges, four apples, but the price of these 2 plus 4, 6 fruits

could be a decimal value. So, let us say, it is 110.5. So, these two values two and four are

of different kind and this value is of different kind. So, a Programming language needs to

first define what kind of variable the programmer is storing in a particular variable.

So, this for the programming languages, this is known as a float value and these are

integers. So, there are different kind of data types. So, different kind of programming

languages try to define their type systems differently. So, some kinds of languages are

based on static type. What are these? In these kind of languages, programmers must

declare the type of all entities.

Entities here is kind of variable. So, we are using a very general term here like entities

before executing the code. The other kind of the type system followed by programming

languages are dynamic type. So, in these languages, types of entities are assigned at run

time. So, what does this mean is variables can change their type that is data type during

the run time.

It means, let us say, here is a variable and we can think about a variable as a 'container'.

So, let us say we are storing number two here. Now, as the code progresses, the

programmer tries to overwrite this value with 2.5. So, what happened is initially, it was

an integer, but after few progression, this container is holding a float value.

So, this can happen in a dynamic type language and thus, what happens is the debugging

means, finding the error becomes very difficult. The last element is weakly typed or

strong typed languages. So, let me start with an example here. So, let us say, you are

storing an integer in variable a as 5 and another variable as 4. Now, these two a and b are

integers.

However, if we divide and declare a c variable and initialize it with 4 by 5, the

computation of 4 by 5, which is 0.8. So, this c variable holds a floating point value. So,

what happened here is, weak typed languages perform implicit type conversions. So,

what can happen is during the run time, the integer and a variable x can change from a

integer to float without being explicitly told to it.

However, in strong typed languages, this does not happen until-unless your x variable is

capable of storing a float value, it will only store the float values. Otherwise, it cannot

store another type of value. So, if we have a variable like x and we declared it as if let us

say, x has been declared as float. So, if we try to store value of 5 in it, then the strongly

typed language will throw an error that it will the type does not match. So, these are few

of the elements of Programming languages.

So, let us move to Classification of Programming languages. Now, there are different

kinds of classifications that are possible, but we are trying to focus on the classification

based on the paradigm this. So, what does paradigm defines? Paradigm defines, how a

programmer builds the code base. So, you may think that a programmer if a programmer

is using a textual language, then he will or he or she will be using a natural language to

build the code base, then how it is different from other things. So, the hierarchy looks

like this.

The first differentiation happens like on the basis of paradigm, the programming

languages can be classified into Imperative or Declarative. And, these Imperative can be

divided further into two Procedural and Object-Oriented languages, whereas, Declarative

can be classified as a Functional, Logical programming languages or Mathematical

programming languages. So, next we will try to see what in detail, what are these

different kinds of paradigms in programming languages?

So, starting with Imperative, these kind of programs consists of command for the

computers to perform. So, the first kind of imperative paradigm is procedural. So, it

contains step-by-step instructions for the computer to follow.

So, example of Procedural languages are like C, COBOL, etcetera. The next kind is

Object-Oriented. So, in these kind of languages, what happens is, we encapsulate both

data and method. Method is nothing but instructions or the processing or what we intend

to do on data. So, we encapsulate both data and method in object.

So, here objects are nothing but instances of a Class. What is a Class? Class is a blueprint

of a particular system that programmer is creating on computer. So, the next paradigm is

declarative. Now, this is an interesting paradigm because here the program contains the

logic of computation without describing its control flow. So, what happens here is like in

Procedural languages, we have seen that everything happens by step-by-step instructions

to the computer.

But during the Declarative programming, we only define the logic of computation,

which means that we are only telling the computer to do the intended operation. We are

not telling the computer how to do it. We are just telling what we need to accomplish. So,

this is the major difference between Imperative and Declarative paradigm. So, the first

kind of Declarative Paradigm programming languages is a functional programming

language.

So, in these kind of languages, program contains functions that provide the logic and

functions are the first class citizens. So, what does this statement means is, that function

can call other functions or can be returned by a function. The other kind of Declarative

programming language is logical. So, here we utilize formal logic statements to compute

the output. So, if you are understanding about the predicate and formal logic, you can

connect to this kind of Declarative Logical programming language.

Here, we always require predicate knowledge. An example of this kind of programming

language is Prolog. This is an old language. The third and the last declarative

programming language is Mathematical. In these languages, we try to search available

alternatives, to select the best element based on given constraints and an example of this

kind of language is MATLAB.

So, Dr. Amandeep has discussed the linear programming aspects in this course. And, to

solve those kinds of problems, we can use the tools available by these mathematical

languages.

So, let us see some more classifications which are very common in the programming

world like, there are some kinds of Machine languages. So, what is a Machine language?

These are Low Level languages that gets interpreted by the hardware. The other

language is Assembly language which is nothing but thin wrappers on Machine

language.

The next is a System language. These languages were designed for writing low level

tasks like, memory management, etcetera. Other kind of language is Scripting language.

So, these are a kind of High Level language and they are usually powerful and can

perform different kinds of programming or task. The other language is a General Purpose

language. These builds software for wide variety of application domains.

Other is the opposite of general purpose language is a domain specific language which

as the name suggests, used for specific purposes only. The last is a Visual language.

These are as discussed non textual that utilizes entities and links to perform operations.

These are different kinds of additional classifications. Now, here we have seen few new

terms like Low Level languages and High Level languages.

What does these words mean is like, if we are using a system and the more a computer

understands Machine language, the Binary language of 0 and 1. So, this is Machine

language. Now, the closer Programming language is to this kind of Binary language. It is

usually known as a Low Level language and we humans usually use Natural language.

So, any programming language that is closer to this kind of language are High Level

language.

Now, the computer does not understand High Level languages, the Natural languages

which we try to write or speak. So, we need to convert these languages into Low Level

languages. So, what happens is here compilers and interpreters perform these

conversions.

So, let us see what are compilers and interpreters in detail. So, the role of compilers and

interpreters is to convert languages into binary codes.

Compilers convert the whole program at once into an executable file whereas,

interpreters perform this conversion instruction by instruction. The next thing about

compilers and interpreters is the executable file that gets generated does not require

language compiler during the run time. So, what it means is, when the compiler is doing

this conversion, once it is done by a compiler, a file gets generated.

This file is, when we run this file, the compiler is not needed during the execution time.

However, when we are doing this conversion using interpreters, they need to be available

in the RAM of the system.

So, however, interpreters are needed during every execution of the program. So, another

characteristic is that, compilers can catch some programming errors during compilation

of the fourth code whereas, interpreters can only catch an error during the run time of the

code.

So, during compilations, if we can get some errors when we are trying to code the

required stuff, if we are getting some errors by the compilers, then we can debug the

code at that time only. But during the interpreters, it will catch these kind of errors, when

we try to run the code and it will only report the first error, will not report all the errors.

So, because the execution is step by step, as we have already seen here, that the

conversion happens instruction by instructions in interpreters.

So, interpreters will only report the errors as and when it finds the first error. The errors

could be many more in the code, but the compilers can show you all the errors which can

be identified during the compile time. So, the next characteristic of compilers and

interpreters is compiled code runs extremely fast as compared to interpreted codes.

Why? Because the compilers try to create an executable file and this executable file will

only have to run the code and it since all the syntax and semantic checks has already

been done by the compiler. So, this executable file is a binary code file and it will only

run the code whereas, an interpreter will always checks the Syntax and Semantics at each

run.

So, it takes time and therefore, this adds the overhead while running the code. However,

these days, there is a new technology which is known as just in time compilation. So,

these JIT compilers can reduce the time between a compiled code and interpreted code.

An Interpreted language always require the interpreter to be present in the system's

RAM.

So, this we have already discussed. Last thing is, compilers generate platform dependent

executable file. However, inter interpreters can execute the same code on any machines

architecture. So, why this is happening is because the compilers are trying to compile the

code and then creating an executable file on a particular system. So, the particular

system, the file generated by the compilers is only dependent on that system because the

binary code has been generated for that system. So, the same executable file may not be

workable on different kind of system.

However, when we are using interpreters, what happens is, interpreters are always

available in RAM otherwise, the code will not run and if the interpreter is available in

RAM, then the code will get executed on any machine be it Linux, Mac or Windows

anything.

So, after learning all these terminologies, let us get back to what is Python programming

language. So, first of all, it is a High Level language that utilizes interpreter. So, now,

you understand that it is a high level language that means, we can code in natural

language and there is an interpreter who will convert it into a machine language.

The next is it is a General Purpose language. So, we have already seen that these kind of

languages can be used in different kind of domains and there are variety of applications

that can be performed with Python like, you may have seen that we can do image

recognitions or we can also perform UI development. The next characteristic is it is

dynamically typed. We have also seen it in earlier slides that, what is dynamically typed

that, the programmer does not need to initialize and tell the interpreter, what kind of

variable we are defining.

So, a particular variable can have different kind of data types during the program

execution. So, this removes the burden from the programmer, but it has an overhead for

the interpreter time to execute the complete code.

The next characteristic is that it has garbage collection. So, what happens is, let us say,

we define different kind of variables and during the program execution, we do not need

those many variables or the in between computations. So, the interpreter will itself

determine whether, it can collect all those variables and remove from the memory. So,

this way, the memory can be freed up. So, this also adds the overhead to the

programming interpreter.

So, this feature handles garbage collection during runtime. Also, Python can support

multiple paradigms. So, we have seen there are imperative and declarative paradigms.

Now, this is a very special property of python that, it can support Procedural

programming, and also support Functional programming and Object-Oriented as well.

Also, functions are here, the first class citizens in python and everything in python is an

object. So, what does this statement means is that, let us say, you define a variable x =

55.

So, during the runtime, the interpreter will tell that, x holds the value 55 and it is a kind

of integer value. So, the developers of the language has already defined a blueprint of

this integer. That means, a class with name int has already been defined in the backend

and the x variable becomes an object of this int class. So, either it is a variable or

anything other else, the Python programming follows the Object-Oriented methodology.

So, everything becomes an object in python. It is also highly extensible supported by

large libraries backed by major corporations or supportive communities. The last but not

the least, it uses white space indentation. So, what happens is there were different kind of

languages before Python and after Python, which try to develop the grammar of a

language which we know as Syntax.

So, the Syntax of this python language syntax contains white space as a valuable

grammar rule. So, when we look at the different statements in the python or the blocks of

python, we can differentiate between different blocks by using indentation. So, usually,

four blank spaces or a tab character show an indented block. So, this feature adds to the

readability of the code.

Next, so let us deep dive into the history of the python programming language. So, in So,

in 1991, the first version of python that is 0.9.0 was released. After that, in 2000, Python

2.0 was released. Recently, in 2020, this version has seen its end of life in 2020. In 2008,

python 3.0 was released and this version was a very controversial release because it was

not backwards compatible.

So, what does this statement means is that, there were some features in python 2.0 which

programmers have used in their source code. Now, if they try to run using python 3.0,

they may face different kinds of errors because the underlying code of the python

interpreter was changed.

So, this problem was known as Not Backwards Compatible. The older versions cannot

be run with this python version and the philosophy of the code base developed in Python,

gets its guidelines from the 'Zen of Python'. So, when we will write the code, we will try

to first see by writing this import this.

So, by writing this statement, the interpreter will give few lines of output which includes

various kinds of philosophical statements about the python code. So, for example, simple

is better than complex is a very famous statement. So, these kind of statements guides

programmer to create a code base so that, anybody can understand it simply.

So, this is the reference for this whole lecture and why we are learning this python

language is that, you have already seen that, professor Philip and Dr. Amandeep has

discussed few models that need different kinds of computations. Now, these

computations by hand gets very hectic. So, at that time, we need computers and their

computing powers so that, we can handle large amount of data and we can get a good

decision using those data. So, Python holds a very high value to create these kind of

decisions in this Decision Support Systems and we will be going to develop few

different kinds of Decision Support Systems using Python and its capabilities. So, thank

you and we will meet in the next lecture.

