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Welcome back my dear friends very good morning, good afternoon and good evening to

all of you. Do you know this is a DADM-II which is Data Analysis and Decision Making

two course under NPTEL MOOC series. And this course is for 30 hours which is for 12

weeks and each week we have 5 lectures each being for half an hour and we are in the

3rd week as you can see from the slide which is the 13th lecture. So, we have already

completed 11 12 and we and the 3rd class for the 3rd week. And as you know that after

each  I  do  repeat  that  and  please  bear  with  me  for  after  each  week  we  have  one

assignment.

So, in totality there will be 12 assignments and after the end of the course there will be

an end sem or final examination based on whatever coverage has been done. And my

good name is Raghu Nandan Sengupta from the IME department IIT Kanpur. So, if you

remember we are discussing about loss functions.  So, to give up again a recap even

though it may be a repetition again I will say that I am going slow because the general

feedback which I am which I got from DADM-I and TQM too which courses which I

have taught. So, they I should I will should pace it a little bit because considering we

have 60 lectures to be conducted.

So, whenever you are trying to estimate your main aim was basically to find out the

estimate  of  the  parameters  based  on  the  fact  the  estimation  estimated  value  or  the

function should have two properties from the statistical point of view which have already

discussed in DADM-I was basically unbiasness another one was basically consistency.

Now, whenever you are doing that it may not be possible. So, that is why you try to

utilize the concept of the loss function. And in loss function I did mention that its very

nice theoretically very proper prim and proper we get good results that if we consider the

unruly square equation for the estimation of the loss functions. Similarly so, ordinary

least square would be quadratic one so, which in which case both over estimation and

under estimation equally penalized.



Now, it could also be turned into a fact that if you want to have equal estimation or equal

errors in estimation both over estimation under estimation we can use the lin lin or linear

linears loss functions which are 45 degrees line. These diagrams I have already discussed

and then you can basically have a lin lin function corresponding to the fact that over

estimation will be more penalized then in then underestimation in that case the line in the

first quadrant would be greater than 45 and line in the second quadrant would be less

than 45. And in case if  underestimation more penalized will  basically  and then over

estimation will have the line in the second quadrant to be more than 45; that means, we

are looking from the left hand side and the line in the first quadrant would be less than

45.

But it was soon found that Hal Varian in the 1960’s from the economics point of view

gave this loss function which is LINEX loss function linear exponential part. So, the first

part is one part is Linnaeus second part is exponential and Zellner in the 1980’s basically

came out with the fine statistical properties about this loss function.

Now, if to give an example, if a which is the parameter value is greater than 0 and you

have overestimation. So, in that case over estimation will be more penalized than under

estimation and in cases a is negative so, in that case underestimation is more penalize

than  over  estimation.  So,  in  the  former  case  where  over  estimation  more  penalized

because a being positive exponential function will dominate the linear function in the

first quadrant.

So, obviously, it will be exponentially increasing and for the case when a is positive in

the same case if you go to the second quadrant in that case linear function will slowly

start dominating as delta increases on to the left I am looking at the real line number line

in front of me. So, a linear function will dominate the exponential function so, it will be

underestimation will be less penalized.

So, if you switch the concepts; that means, a is non negative in that case overestimation

would be less penalized because the linear part will dominate the exponential part as

deltas  tends  to  increase  goes  more  on  to  the  right.  And  in  case  when  in  the  same

sequence if you consider underestimation will  be more penalized than overestimation

because in that case exponential part will slowly dominate the linear part.



Now, to give an example I did see in DADM-I definitely something about the examples.

So, I will consider that and then I will read those example which are stated. So, consider

this loss functions in which the LINEX loss function. So, if you are trying to build a dam

the examples I have already given. So, building the dam would be and if the height is

120 feet and in two cases it is 122 and another second case is 118. 

So, if you use the quadratic loss function it is basically 122 minus 120 which is plus 2

whole square is this 4 and in the second case is 118 minus 120 is minus 2 whole square is

4. So, in both in cases where overestimation underestimation equally penalized this plus

2  and  minus  2  would  have  the  same  consequences  in  the  practical  concept  of  the

theoretical concept.

But, I did also mention that that is practically not actually possible because in the first

case  when  you build  a  plus  2  meter  height  the  initial  cost  is  man  hours  lost,  extra

material cost and there is an overshooting of the cost. But the positive side is that if a

flood comes then, the propensity or the probability of the flood breaching the dam which

is already of 122 feet height would be much much less.

So, the catastrophic loss would not be there. So, an initial cost would be higher which is

not as catastrophic as phenomenal as in the natural calamity loss, but in the case when

the height is 118 there the cost initially for man hours material is much less, but when the

flood comes the propensity of the flood breaching the dam is much higher. So, the whole

consequence would be a devastating natural calamity loss, loss of manpower, loss of

cattle agricultural everything will be flooded and inundated.

So, in this case we will consider practically underestimation to be more penalized then

over estimation. Now, if we consider the second example that was first one from the civil

engineering second which we consider say for example, from the electrical engineering

you have a machine, the machine has fuse fuses or trip switches vacuum circuit breakers

and the actual overall warranty of those vacuum circuit breaker is 6 months.

So, consider initially two cases; in case one you overestimate with 6 by 8 and another

case you basically over esteem underestimate 6 by 4. So, in the first case the difference is

8 minus 6 is 2 whole square of that is 4, in the second case the difference is 6 minus 8 is

minus 2 whole square of that is 4. So, if you use the quadratic loss function in both the



cases it is equally penalized, but actually the situation is not that consider case one where

you overestimate.

So, in that case what will happen that you will basically be tempted to stop the machine

after  the  6  months  warranty  life  check  the  machine  and change  the  vacuum circuit

breakers well. In that case we are doing the extra production month over and above the 6

months would; obviously, be beneficial for you on the production front profit front, but

the problem is that if there is a catastrophic voltage fluctuation then they would may be

huge amount of manpower loss, accident and the whole machine may be destroyed and

people may be hurt and so on and so forth.

Now, if you consider the case two when you underestimate so; obviously, the production

would be affected you will stop the machine much before hand then 6 months when you

want to change the circuit breakers, but the probability of any catastrophic loss for the

failing of the warranty life of that vacuum circuit breakers would not be there because

you are replacing those vacuum circuit breakers much before so; obviously, they may be

some one or two rare cases, but in general it would not be there. So, the overall loss in

the second case would be initially only man powers loss, but catastrophic loss would not

be there man power loss because you have stopped the production.

So, if  you consider this  actual  practical  situation you will  see that  you would rather

consider  overestimation  to  be  more  penalize  than  underestimation  and  solve  the

problems accordingly. Consider third example where we are not sure that what the values

of a would be in the first case values of a was negative for the dam case, in the second

case value was a was positive for the electricals machine part and for this case say for

example, marketing or it consider the marketing problem.

So, you have a product in the market and you consider the warranty life of the machine

to  be  1  years  or  12  months  and  you  consider  two  situations;  in  one  case  it  is

overestimated to 15 months another case is underestimated by 9 so, 12 is basically 9. So,

in the first case 15 minus 3 minus 12 is plus 3 plus 3 whole square is 9 in the secondary

is 9 minus 12 is minus 3 minus 3 whole square is 9. So, if you consider that the squared

error loss in both the cases it is equally penalized as 9 and 9.

Now, see what are the actual situation the which may be different because considering

that we have to decide on the sign of a. So, in the first case if  you basically give a



warranty life higher than the actually it should be which is 12 months so; obviously,

people will be more tempted to buy a product you basically capture a good market share.

But the probability of these machines or the products failing so, products can be say for

example, a refrigerator fridge, AC, coolers whatever it is failing would be much higher.

So, people and in case it is a warranty time it means you have to basically replace those

machine replace those products. So, if the probability of failure of those machines is

much higher because you have given a warranty life of 15 months and when in actuality

and in practical sense it should be 12 months. So, many permissions would be failing and

you have to basically replace them so, they would be a business loss or your overall

goodwill in the market would be lost.

So, you make a huge loss later on and your competitors gain again the market. But in the

second case, when you basically predict the warranty life to be 9 months. So, in this

initial case what will happen then; obviously, products which are 12 months being been

proposed  by  your  competitors  people  would  definitely  be  more  willing  to  buy  this

product. So, initially you lose the market share, but it may so, happen that in the long run

that as the you basically depress the product and you slowly pick up. So, you will be

tempted to give a little bit more higher warranty life.

So, people may be tempted to basically come under your marketing scheme and buy that

product. So, initial loss is basically compensated by a increase in the market share later

on. So, the value of a which you will decide for this case on the marketing the a is plus or

minus would depend on what you think is more important for you. Is it say for example,

more of market share loss or is it may basically gaining of market share which is positive

or is basically losing the customer satisfaction and litigation case is being filed by the

customers because the products fail much before then what you have basically said that

should be the warranty life.

So, you have to make a decision that what the value of a should be. Now I also discussed

that the as you expand the value on the value of the LINEX loss with respect to e that

means, take the expansion of e the first two terms which is 1 and a delta by 1 cancels the

only term left is basically the second power a square delta square by 2 factorial and then

higher power. So, if we ignore the higher powers basically the LINEX loss in an around

the value of 0 becomes a quadratic loss function.  Now in regression model what we



generally consider is that in regression model we consider and I have already discussed

that in DADM-I so, I will again repeated in regression and then come to the actual use in

DADM-II.

Why I am discussing that in regression model we consider that you have the errors.

Errors is basically the difference in the actual value of y and the estimated value of the

forecasted value of y which is y hat which is basically the error you squared the error,

sum the errors for all the values of n which you are going to take.  Differentiate this

square sum of the square of the errors with respect to the parameters, parameters would

be for the multiple linear regression would be the first parameter would be alpha, second

one is beta 1, then third beta 2 so on and so forth. Till beta k you have basically k plus 1

equations considering alpha partially differentiate these sum of the square of the errors

with respect to all these parameters put them to 0.

So, all these k plus 1 equations and get the k plus 1 parameters which would now be

alpha hat beta 1 hat, beta 2 hat, till beta k hat. But now general Zellner again in later

years proposed a loss function which will now discuss.

(Refer Slide Time: 14:28).

So, it is basically a balanced loss function balance means you are balancing the loss with

respect to some criteria which is there. So, I will basically discuss this loss function as it

is and then I will come to the slide for first let me give you the background.



Now, whenever you are estimating in the multiple linear regression case what you are

trying to do is basically first step is to find out the alpha hats, beta hats, that is alpha hat,

beta 1 hat, beta 2 hat so on and so forth and then use those hat values which is the

estimated values in order to basically estimate the y hat value. So, they basically you are

doing a two step process. Now Zellner basically further extended that and basically had a

loss function where you basically penalize these two loss with the weight age of the delta

and 1 minus delta where the sum; obviously of delta and 1 minus delta should be 1.

So, the balanced loss function looks like this and I am going to consider both the losses

for the estimation part and the forecasting part estimation being for the parameters and

forecasting being for the value of y as both being quadratic.  So, that mean basically

highlight. So, delta is basically w here. So, the first part is what I will do is highlight with

the yellow one is the estimation point; that means, you have theta as the actual parameter

and you are estimating that using a sample size of n. So, which is T n is the parameter

estimate.

So, T n minus theta whole square would give you the squared error loss with respect to

the estimation problem and you basically multiply that with 1 minus delta 1 is the w

which is the weight. That is point 1 and we will basically use that term as precision of

estimation I am not highlighting and I am just basically pointing out with the pointer this

is  the  precision  of  estimation  because  your  main  task  was  initially  to  estimate  the

parameter values.

Next once precision estimation is done will basically try to forecast the error term or find

out  the  error  term.  So,  that  basically  comes  for  the  goodness  of  it  again  I  am not

highlighting it I am just moving my pointer there which is the goodness of fit or the lack

of bias. So, the goodness of fit would basically be the now there you have basically a

functional value of theta. So, it will basically be g theta and when you basically estimate

that using the T n value which is the estimated value of theta then it will be a function of

g T n.

So, again I find out the errors corresponding to the forecasting errors. So, this is basically

is again a quadratic loss function because you take the transpose multiplied by the same

matrix or the vectors and the error term which is there is again is w. So, you should take

the sum of 1 minus w and w it becomes 1. So, a balanced loss function now I will read



will have w being the values giving to the weights w is between 0 and 1 the balanced

loss function proposed by Zellner in 1994 reflects both goodness of fit and the lack of

bias at the precision of estimation. The first term note presents the goodness of fit while

the second basically represents the accuracy of the initial estimation value. I would not

discuss, but I will basically highlight it using the qualitative concept.

So, generally technically what you will find out is that when you consider the balanced

loss function and you want to basically or say for example, let us go one step backward.

So,  you  basically  have  a  exponential  distribution  or  you  basically  have  um gamma

distribution or you basically have a normal distribution so; obviously, when the estimated

values are found out considering the squared error loss you have basically squared error

estimate.

So, in this case when you have the squared error estimate you will basically have from

the normal distribution the best estimate for the sample mean is x n bar which for the

population parameter which is the mean value which is mu the best estimate is basically

the sample estimated which is x n bar. Now similarly when you change it to the LINEX

loss again we see that we have a different estimate and you can find out what is the

estimate and it has been found out by Zellner.

So, you can and you will basically have a nuisance parameter based on which you will

basically  say that this  is the best  estimate of the mean value which is  mu under the

condition  when  you  have  the  LINEX loss  functions.  Similarly,  if  you  have  gamma

distribution or this extreme value distribution or for the exponential distribution all the

parameters  would basically  have one type of estimate found under the ordinary least

square and another type of estimate found under the LINEX loss.

Now, it has been proved that if you are able to find a convex combination of this loss

function that is not in the balanced loss function is basically for the case for the multiple

linear  regression.  When  you  consider  for  the  estimation  of  say  for  example,  the

parameters of any distribution if you basically take a convex combination of this loss

function which is LINEX loss and squared error loss then the general estimate which you

find out using these two combination of the loss function actually becomes the actual

estimate  either  under  the  case  of  LINEX  or  under  the  case  of  squared  error  loss

depending on what is the value of lambda or w you are trying to choose.



So, at the boundary conditions the values of this  estimate which you find out would

basically equal to exactly equal to under squared error loss and another case it will be

exactly equal to the LINEX loss. So, which is a beauty of this the new estimate which

can find out it can be proved. Now similarly you if you basically venture on to the task

that  if  you  want  to  find  out  say  for  example,  balanced  loss  function  considering  4

different combinations. So, what are the combinations let me go one by one.

(Refer Slide Time: 20:32).

Now, I will basically draw it. So, this is the balance this is the second slide. So, I have

just made it in order to explain. So, there are IV cases, case I. So, L I am only using l it

will basically be the balanced loss function first would be LINEX w into LINEX plus 1

minus w into squared error loss, IInd case is w into squared error loss plus 1 minus

LINEX, IIIrd case is LINEX loss balanced loss function sorry LINEX plus 1 minus w

LINEX and the final case which you have already done, but I will just mention it again is

w squared error loss plus 1 minus w squared error loss.

Now, let me highlight them. So, I am using LINEX here, I am using LINEX here, I am

using LINEX here, I am using LINEX here, I am using LINEX here and I am basically

mark  the  squared  error,  squared  error  here,  squared  error  here,  squared  error  here,

squared error here . Now and now actually the task is what? The task is for all these

combinations I have two different estimates to utilize number one I will try to utilize



theta  hat  which will  be the  estimated  value of  under  squared  error  loss  and another

denote by theta tilde a which is the estimated value under LINEX.

So, basically we will try to combine point one actually combined is squared error loss

with all these 4 combinations that is point one. And in the other case we will consider the

LINEX loss  under  these  4 conditions  and then for  try  to  find out  depending on the

situations  which you have they can be different  type of  loss function which will  be

basically  giving  us  estimates  under  the  loss  function  which  will  given  us  different

answers point one. Point number two what will be interested is that well is it possible to

find out a general estimate for all these 4 cases, 4 cases means here a general form of

theta say for example, hat I am using the hat which is now basically a combination of

SEL plus LINEX depending on the value of w and at the boundary conditions whether

when w is 0 and w is 1 for all these cases we get. So, w is 0 for this case for say for

example, for the Ist and the IIIrd case we should basically get theta tilde LINEX for the

Ist and the IIIrd and for the case again for the Ist for say for example, for the IInd and the

IVth if this is 0 so, this is for the Ist and IIIrd for the IInd actually it should be theta hat

squared error.

So, if you are able to prove it. So, it will be a good step where actually in the case of

distributions we have been. So, generally we will need to find out that whether you can

do it for the case for the well balanced loss function and obviously, we will consider

some assumptions.

Though so, this is just a precursor based on which we will basically try to come back and

consider it later. So, again remember we will have basically 4 combination squared error

LINEX, LINEX squared error, then LINEX LINEX and squared error squared error for

the  combinations  for  the  second  part  is  basically  first  precision  of  estimation  then

biasness or goodness of it. And for all this case we take the cases of LINEX loss estimate

and the squared error estimate which are already noted in literature find a general form of

the estimate such that our boundary conditions w is equal to 0 or w is equal to 1 we get

actually what it should be depending on the case where we get it is the estimate under the

squared error loss and estimated under the LINEX loss.



(Refer Slide Time: 26:19).

We will consider the simple case of stochastic dominance and I will basically go a little

bit  slow here also with examples  by the way we did discuss  many things  about  the

balanced  loss  function  this  was more of  precursor  problems anything else  would be

carried on later on because this concept of LINEX loss will be coming up later on when

we consider different type of other nonparametric decision making.

So, first consider the first order stochastic dominance, third second is the second order

stochastic dominance and we will also consider the third order stochastic dominance. So,

we will basically go one by one for the first order, second order, third order and consider

them with examples. So, with this before continuing with the first order one I would like

to close it here and continue with the discussions for the for the stochastic dominance

and  come back  to  the  concept  of  utilizing  the  LINEX loss  later  on  in  the  multiple

decision making problems have a nice day and thank you very much.


