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So,  welcome  back  to  the  course  on  analytics  here.  So,  we  have  tried  study  the

descriptive,  predictive  and  prescriptive  analytics.  So,  I  will  cover  regression  in  this

session.
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So,  what  is  Regression?  Regression  is  a  statistical  method  that  analysis  and  finds

relationship between two variables. If I say two variables this is linear regression here

also we can have multiple regression the when there is one dependent variable and more

than one independent variables. So, this is used in predictive analytics to predict future

numerical value of a variable, this predict future numerical value.
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So,  let  us  the  see  how  does  regression  work,  simple  linear  regression.  A simple

regression enables us to develop a model to predict the values of a numerical variable

based on the value of other variables. So, in regression analysis the variables we wish to

predict is called dependent variable and the variable used to make the prediction is call

independent variable to be predicted used to predict this variable.

So, regression analysis allows us to identify the type of mathematical relationship that

exists  between  a  dependent  variable  let  me  say  dependent  variable  is  Y  and  an

independent  variable  X and  this  quantify  the  effect  that  changes  in  the  independent

variable that it has on the dependent variable. It says that Y is b naught plus b 1 into X

that is with 1 unit change in X 1 unit change in X implies b 1 units change in Y, this sign

here might be plus or minus I have put the word change not increase or decrease the

change can be increase or decrease. So, this is a simple linear regression model.
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As I just put it Y i is equal to beta naught plus beta 1, X i plus the error term. The

simplest  relationship  consist  of a straight  line of linear  relationship  according to this

equation of line. This is a straight line equation with error term where this beta naught is

the intercept that is intercept on Y this beta one is the slope of line slope for population Y

i is my dependent variable X i is the independent variable and epsilon i is my random

error. So, let us see a few details of regression model linear regression model here.

So, an example here can be the sales if my Y i sales is equal to maybe I put some number

here 3.28 plus or let me put a bigger number 203.28 plus 1.5 times 1.5 times the cost

price or this can be maybe twice. So, here the cost price is the independent variable we

are trying to predict the sales. So, this is the intercept this minimum this much of sale

would happen, but with one unit change in cost price 1.5 times the sales is increasing.

So, this is a regression model.
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So, let us see how is this seen in a graph. So, this is a graph of simple linear regression

we have this  relation dependent variable,  independent  variable,  error term, slope and

intercept. So, this is intercept beta naught, this is intercept here and this is slope beta 1,

slope is actually tan theta that is perpendicular upon base, this length by this length, this

is slope. 

So, these are my observed values these are my observed values. So, this difference from

the predicted model, this is the model regression model this difference from the predicted

model that is epsilon i is known as random error. So, this is the observed value, this is the

predicted value. Observed value minus predicted value is my error. So, epsilon i is equal

to observed value minus predicted value.
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So, next is how do we determine the simple linear regression equation. The least-squares

method is one. We have this equation Y i is equal to beta naught plus beta 1 into X i plus

error. The least square method says that the predicted value that is Y i cap is equal to b

naught plus b 1 X i please note I have put b here not beta because this is for sample not

population.

So, here Y i cap is the predicted value and this is X i is the value of observation b i is the

sample intercept and b 1 is the sample slope. Now, what happens when we use least care

method this b 1 and b 2 calculated as b 1 is equal to SS xy by SS x. What is SS? SS is

sum of squares. So, what are these let us see.
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SS XY is summation i is equal to 1 to n X i minus X bar and Y i minus Y bar. So, this is

actually the observed value minus mean and the observed value minus mean for X and Y

two variables here. So, this comes down to summation i is equal to 1 to n X i, Y i minus

summation X i summation Y i in both cases i is equal to 1 to n, i is equal to 1 to n by n

and SS x is the sum of squares for variable X only that is X i minus X bar is square i is

equal to 1 to n which is equal to i is equal to 1 to n, X i square minus summation i is

equal to 1 to n X i whole square by n.

So, we will see how do we look this in on the graph then beta naught can be calculated as

Y bar minus b 1 X bar, this is actually for the sample we have these values we have the

values of X i we have the values of Y i we know what is n 1 to n values are there 1, 2 and

so on up to n this tables here. So, we can obtain Y bar here X bar here that is the average

value or mean, then we can get these relations X i minus X bar all in the table X i minus

X bar Y i minus Y bar and we can calculate SS XY and SS X sum of squares for XY sum

of squares for X.

So, what are the this is the total sum of squares and the explained sum of squares. So, we

can find the value of b 1 from here that is the slope and how do we calculate b naught b

naught is we know the value of b one we know the value of X bar and Y bar we will find

the value of b naught. This is how we draw the line for sample then we get this equation

for the sample.
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So, measures of variation here are total sum of squares, regression sum of squares and

error  sum of squares.  So,  the first  measure is  total  sum of squares when using least

square methods to determine the regression coefficients for a set of data one need to

compute  these  important  measures  of  variation;  number  1  is  total  sum  of  squares,

number 2 regression sum of squares, number 3 is error sum of squares the total sum of

squares is the total that is the sum of explained and unexplained variations. So, this total

can be divided into two parts explained and unexplained where explained implies data is

able to explain this, but something that is not unexplained that is due to error that is

unexplained data is not able to explain this variation.

So, this explained variation is called the regression sum of squares, this is regression sum

of squares here and the unexplained variation is called error sum of squares. So, we can

say that SS total is equal to sum of the regression and error sum of squares.
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So, if I try to plot this on a graph we can see that we have the average value Y bar here

and our model is like this. This is the predicted model that is Y i cap this is the model Y i

cap is equal to b naught plus b 1 into X i.

So, let us see how is this represented on this graph this relation. Now, let me put one

value Y i here one observed Y i. This Y i is distant from the model ideally this all these

points the observed points should be very much close to the model. The closer are the

points in the model the lesser are the error value that is the model is trying to explain

very well the data if this values are large; that means the error is large. So, this actually

the error so,  this  Y i  distance from this model  this  line is  error this  is  error sum of

squares.

Next, we have the distance between Y bar and the model, Y bar and the model here is the

regression sum of squares that is the average value of the data is Y bar my regression

model is giving the predicted value Y i cap, this is the value Y i cap here predicted value.

The difference between Y i cap and Y i bar it is Y i cap minus Y bar square sum of sum

of the square this difference Y i minus Y bar difference square sum of summation of this

squares that is my sum of squares due to regression.

Now, my predicted value is Y i cap and my observed value is Y i this comes down to the

error sum of squares which is Y i minus Y i cap then sum of squares this is sum of

squares due to  error. So,  if  you see the regression sum of squares and error  sum of



squares makes the total sum of squares here. So, this Y i cap this length plus this length

makes the total sum of squares that is Y i this Y i minus Y bar this is Y i minus Y bar sum

of squares this is my SS total this is equal to or this is known as total sum of squares.

The whole idea in regression is to predict the value to predict the value of the dependent

variable to find the model that is closest to the available data. So, the thing here is that

the error should be minimum the lesser the error is the closer the model is to the original

data.  So, this  value should be minimum SS error for the model  to fit  good SS error

should be this.

So, again I will put SS total is equal to SS explained that SS regression plus SS error

when I  say SS surface  is  sum of  squares  when I  say SS r  it  is  sum of  squares  for

regression that is explained sum of squares, one is a SS e it is sum of squares for error

that  is  the  unexplained  sum of  squares.  So,  this  is  explained  by  the  model,  this  is

unexplained by the model.

(Refer Slide Time: 22:14)

So, the measures of variation in regression can be calculated as total sum of squares is

equal to the regression sum of squares plus error sum of squares putting the same thing

in a statement here. So, the total sum of squares is mentioned in the graph here that is Y i

minus Y bar square; that means, this SS total I am putting that again here SS total that is

sum of the square of the observed value minus mean square i is equal to 1 to n and sum

of squares regression is the predicted value that is Y i cap minus Y bar i is equal to 1 to n



and sum of squares for error is the unexplained variation that is a Y i minus Y i cap sum

of squares.

So, how does this help us? We need to find the coefficient of determination coefficient of

determination.

(Refer Slide Time: 23:46)

It is also known as the regression coefficient, it is r square. 

Now, r square is the coefficient of determination which is equal to the regression sum of

squares divided by total sum of squares that is regression sum of squares by total sum of

squares that is equal to SS due to regression over SS total, which implies the higher value

of regression sum of squares would lead to higher value of r square that would give the r

coefficient and obviously, this regression sum of square is equal to total sum of square

minus error sum of squares by SS total which implies the lower value of error sum of

squares would lead to higher value of r squares so; that means, SS r higher value desired

and SS e low value desired.
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So, next is standard error of the estimate the standard error s for the estimate of Y due to

X is equal to square root of these sum of squares for error that is unexplained variation

divided  by degrees  of  freedom,  degrees  of  freedom here  is  n  minus  2  because  two

parameters are known here. So, that is subtracted from n. So, degrees of freedom comes

down to n minus 2. So, this is the square root is taken because this was sum of squares

and we just need to find the error. So, this if I put the relations here of sum of squares

that is equal to sum of squares of Y i minus Y cap Y cap squares by n minus 2.

So, this Y i is actual value or observed value again this is observed or the actual value Y i

cap is predicted value the i is this is for given X i for given value of the independent

variable.
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So, there are certain assumptions in regression number one is linearity. This states that

the relationship between the variables is linear the relationship is linear, that is straight

line. However, in realistic situation these relationships are not linear and these are also

sometimes  not  additive  in  nature  like  in  the  example;  we  were  saying  sales  were

dependent upon the cost sales second variable here can be in the multiple regression. The

second variable can be incomes here that depend upon the income and sales are depend

upon the willingness to pay these are all variables we are just adding these variables. But,

in real life these are not additive, so, we are just assuming that.

Then independence of error is the second assumption here which says that the errors

epsilon  i  are  independent  of  each  other.  So,  we  try  to  draw  the  plot  for  this  for

independent of error and also for the normality check this say that the normality of the

error. Normality of error tells that the errors are normally distributed at each value of X.

Then last is equal variance that is the variance for error is constant for all values of X,

variance  for  E i  is  constant  for  all  values  of  X,  here  at  each  value.  So,  these  four

assumptions if are met the model is good.
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The  next  is  residual  analysis  the  residual  or  estimated  error  value  is  the  difference

between the observed value and the predicted  value of the variable.  So,  the residual

graphically  a  residual  appears  on  a  scatterplot  as  the  vertical  distance  between  the

observed value and a prediction value. Now, we have put the notation e here it it is a

epsilon i is equal to Y i minus Y i cap.

(Refer Slide Time: 30:21)

So, this residuals are to be distributed like this. So, what is happening here. So, this is

telling  that  there  all  the  all  have  equal  variance.  So,  this  is  standardised  regression



residual versus standardized prediction value. So, this is distributed evenly along this

line, distributed evenly. So, though the ideal distribution would be like this one if this is

my model  ideal  distribution  will  be like  this  it  is  all  constant.  So,  in  this  case it  is

aligning more towards our positive side, but it is evenly distributed across. So, this is

also acceptable.

(Refer Slide Time: 31:14)

So, there are certain pitfalls  or drawbacks in regression and certain ethical issues are

there,  that is,  in regression there is lack of awareness of assumptions of least  square

regression because we just used the least square phenomena in regression. So, there are

certain assumptions here which we have just discussed. Generally, the researchers do not

know do and they are not aware of this assumptions and the regression only cannot just

predict the final output. This just gives an overview discussed give broadly gives that

what would be the behaviour of our product based upon the independent variables. So,

the lack of awareness is there.

Number-2;  not  knowing how to evaluate  the assumptions  is  one pitfall  not knowing

about  the evaluation of assumptions,  then not knowing what  the alternatives  to least

square regression r if particular assumption is violated if some assumption is violated.

What do we do? We apply the diagnostics. We will see these the forthcoming session. So,

what diagnostics are to be apply for assumptions are not met this is not known generally.

So,  using  a  regression  model  without  knowledge  of  a  subject  matter  is  a  big  issue



extrapolating  outside  the  relevant  range  can  be  one  issue.  So,  concluding  that  a

significant  relationship  identified  in  an  observation  studies  due  to  cause  and  effect

relationship. 

So, to learn regression we need to know what are the diagnostics, what are the various

plots which will see in the r session of this regression here. What are the various statistics

of parameters which check the validity of the regression model those are very important.
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So, next comes the multiple regression we can extend this simple linear regression model

of equation by assuming a linear relationship between each independent  variable and

then dependent variable. They say that Y i is depending upon X 1, X 2, X 3, so on up to

X k,  these  much  of  independent  variables  and  there  is  some error  there  is  a  linear

relationship. So, this was one of the assumption here, where beta naught is the intercept

for population. So, mind it this is beta, this is for population and beta 1, 2, 3 are the slope

of Y with variable X 1 holding variable X 2, X 3 so on, up to X k constant, when these

are all constant this slope is then calculated.

So, when X 1 and X 3 to X square constant X 2 is calculated again beta 2 is slope of XY

with variable X 2 holding the variables X 1, X 3 and so on up to X k constant. So, this is

multiple regression, but this is linear regression this is not non-linear regression. Even if

the independent variables are of higher degree the regression is still linear regression if I

say is the relation like this one Y i is equal to beta naught plus beta 1 X 1 plus beta 2 X 2



plus beta 3 X 1 square plus beta 4 X 2 square and if there is some interaction; interaction

means both of the independent variables are interacting with each other that I can put

beta 5 into X 1, X 2, is this a linear equation? No. 

This is a polynomial equation on in second degree polynomial equation the equation is

polynomial, but the regression is again linear here please note this thing generally people

think  that  this  is  a  non-linear  regression  non-linear  regression  is  only  when  these

coefficients beta naught beta 1, beta 2, beta 3, beta 4 are related to each other in a non-

linear  manner. So,  that  is  the only non-linear  regression we already talked about the

linear  regression  and  this  equation  here  is  the  linear  regression  or  linear  multiple

regression.
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So, in this case for multiple regression also the coefficient of determination, coefficient

of multiple determination is again r square that is the regression sum of squares by total

sum of squares. So, this was regression. So, what we discussed here, we discussed simple

linear regression with one variable. Then we saw the graphical plot of regression model

then we saw the relation or regression equation in which we had the dependent variable

and independent variable and intercept and error term.

Then, we saw the least square method which actually defined the relations here least

square method of regression in which the predicted value of the sample was seen and

how the predicted value is related to the observed and mean value. We saw that the total



sum of squares is equal to the sum of the regression sum of squares and error sum of

squares.  Here,  we saw that the error sum of square is intended to be minimised and

regression sum of square value should be high. Then we saw standard error of estimate

and  we  put  a  quick  glance  on  the  assumptions  of  regression,  then  we  had  a  little

information on the residuals that the variance should be constant and we saw the pitfalls

of using regression models.

So, with this I would like to stop here. Let us meet in the next lecture.

Thank you.


