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Welcome you all to another lecture in the practitioner course on Descriptive Prescriptive

and Predictive Analytics. I am Sanjeev Newar, a practitioner, a user of analytics all kinds

of  analytics  and  I  would  be  covering  a  hypothesis  testing  today  primarily  from

practitioners point of view relying more on the intuition part of it, the feel of it, so that

you can play around with the tricks that this hypothesis testing offers and also beware of

the traps and where you can trip down doing your analysis.

So, let us begin with creating an intuition about what this hypothesis testing and I am

sure you would have the course on hypothesis testing may be some times in your under

graduate or graduate studies, but let us have some kind of an intuition around it. So, if

you ask me hypothesis testing is the art of lying with statistics.

So, there is a famous book by Derrel Hagf called How to Lie with Statistics. This was

written, a master piece written in 1954 and as you would see and as you will discuss the

traps, the trips, the pitfalls, you will see how it is easy to prove or disprove any kind of

information using hypothesis testing or other statistics in general the goal of this lecture,

however you will be to make sure that you are as unbiased as possible and you do not

use statistics just for validating your hunch or proving your hunch, but rather doing an

unbiased analysis to see whether your hunch or your guess, what you believe is true, is

actually is true or not..

So,  let  us  for  example  begin  with  a  typical  industry  problem  and  to  give  you  a

background, most of this hypothesis testing is used a lot specially in the management

domain, in the soft sciences, in the social sciences, of course medical pharmaceutical is a

big taker of this hypothesis testing, but it has lot of use in other in other sciences also

primarily where the data is not very clear.



So, let us for example, assume that you are HR manager of the firm. So, as Dilbert has

said you know in a company there are people who work and there is HR, I mean just to

give you a perspective now you as an HR has a job to make other people work. So, for

example, you created some HR initiatives, you made some changes, you created some

training programs as to improve the performance of the employees in the company. So,

for example, you have a kind of a score let us further time being not get into what is the

source of the score, but there is a score which measures the quality or the performance of

the employees.

(Refer Slide Time: 03:55)

So, for example, you know you have a score of 25 60 43 56 32 43 47 59 39 41. So, these

numbers these are scores of ten randomly picked employees in your organization. So,

you hr manager  of a  large organization  and you had all  this  performance enhancing

initiatives taken and then, you take a random sample of 10 people and you want to see

whether their performance is good or bad or ugly or whatever.

So, if these be the 10 scores of 10 randomly chosen employees for sake of ease let me

share the numbers of their mean. So, for example, mean of this score come out to be x

bar comes out to be 44.5, the standard deviation of the mean or other. The sample we will

talk about difference of standard deviations or the variance of the mean and variance of a

sample which is another pitfall.  So, for this sample, the sample standard deviation is

11.41 and just to give you a perspective, sample standard deviation is nothing, but each



of these values minus the mean by n minus 1. So, you would have gone through in the

previous  lectures  just  to  give  you  remind.  So,  again  from  purely  from  intuition

perspective this x bar represents the average also called mean and this is a measure of

divergence and data.

Now, given that you have this data suppose I tell you that the minimum acceptable score

for a good employee as per your research is say 45. So, what it means is that if the let mu

be the mean of entire populations of employees. So, if suppose this was the gold standard

that you had made that the mean of entire population of my entire employees has to be

45 or above and the sample that you took you get a score of 44.5. So, does it mean the

performance  enhancement  initiative  way  of  taken  are  not  to  mark  or  because  the

diversions if you add for example, the mean and the standard deviation it kind of goes up

to 55 or slightly above that. So, does it mean that this is just a sampling error and if you

take the mean of the entire population, there is a probability that the actual mean of the

population is actually above 45. So, how do you take these decisions?

What if instead of 45 we had 56? Can you still make an assertion? So, these type of

questions are answered by hypothesis testing. Now, there are two reasons why this value

and this value are different. One is of course that this is just a set of ten values from an

entire populations of may be hundreds or thousands or ten thousands of populations. So,

it may not be a complete representative of the entire population. For example, if this be

the distribution of your population where on the x axis, you have scores and on y axis,

you have the proportion of people having a particular score.

So, I think we have talked about normal distribution. We will just get a feel of this later,

but suppose this be the distribution, now what may have happened is that you might have

because you have just  chosen 10 people,  you might have chosen more of the values

which are tending to the lower side and hence, your score is slightly low that is one cause

of error that may happen. So, this is you can call it as sampling bias. The second cause is

that these numbers mind you these numbers that you are having these unlike some of

these  hard  sciences  where  these  numbers  are  obtained  through  a  very  sensitive

instrument. These are numbers through some complex, some test etcetera.

So, these have a subjectivity and when there is subjectivity, there is a measurement error,

there is also measurement error when you make calculations or you take out numbers or



you derive values from any instruments,  but these errors are actually  much larger in

action when we deal with subject like management or human resources or this softer

sciences because these numbers for example would have come through some tests and

those test itself may have some kind of a measurement errors. So, there is a measurement

errors, there is a sampling bias and hence, these numbers may not be true representative

of the entire stream of populations.

Now, we will talk about errors in measurement and how to deal with it later, but right

now our focus is that given that we get these kind of numbers, what is the probability or

what is the chance that we are still able to say that yes my sample as a mean which is

above 56 or above 44 or whatever number you take. So, for this two happen again let me

first up all also give you that whenever you give this kind of test, we assume few things

number one, we assume that the sample is from a normal distribution.

(Refer Slide Time: 12:12)

So, this is assumed for all kinds of hypothesis testing. Number two and this follows from

this we assume that the samples have been taken as randomly as possible. There is no

bias.  Hence,  the expected value,  the mean of the sample is actually  the mean of the

population.

We also this further implies that the square of the standard deviation of the sample is

equal to the variance of the population divided by n. Now, these are basically derived

from the assumption of normal distribution will not get into the mathematics of it, but the



essence  is  that  whenever  we  are  doing  a  hypothesis  testing,  we  will  talk  about

assumptions later, but most of the case, most of the hypothesis testing we assume that the

population is a normal distribution.

(Refer Slide Time: 13:50)

Now, let  us  talk  about  the  confidence  interval  and then,  understand how to  make a

reasonable  hypothesis.  So,  as  we  said  we  assume  that  the  population  is  a  normal

distribution. So, let this be the normal distribution curve, this be the mean. Now, if you

recall  when  we  talked  about  these  probability  distributions,  we  learned  that  the

probability of any value happening in this entire area is equal to 1. Mind you do not ever

touch the axis,  but they just  reach the axis somewhere in infinity  same thing on the

negative side.

So, when we are doing a hypothesis, we assume that the sample now all the values you

have taken, you may have taken, chosen one value which is around this place. You may

have chosen one value here, one value here, one value here, one value here, one value

here.  Hence,  the mean may not  be exactly  this,  but  probably the mean that  you are

getting is slightly lower. So, what you do is, you define something called a confidence

interval which means you are saying given that my sample is not the entire population.

There  is  a  chance  of  my sample  parameters  to  be slightly  diverged from the  actual

population parameter.



Hence, let me see whether that diversion is acceptable to me. So, for example, you define

a confidence interval. Let us say 95 percent 0.95 which means that this extreme area of

the normal distribution represents only 5 percent of your total sample. So, now what you

are trying to say is that if I have taken a sample where the value ranges, if the value is

less, then this 95 percent which means if I have to repeat the same experiment again and

again and again and for the 95 percent of the time if my sample mean comes out to be

less, then this particular 95 percent red line I would say that that sample has come from

this particular, from this particular distribution as mentioned here.

However, suppose I have collected some samples and the values where say some where

here, here, here, here, here, here, here and hence, the mean was coming somewhere here.

Let this be the new mean. Then, I would say that it is only 5 percent likely that these

values are coming from this particular distribution probably, then the values are coming

from a different distribution which has. So, may be this is another distribution. Now,

probably the values are coming from this distribution. So, if I have to simplify and tell

you the choices to decide whether the values are coming from this distribution or this

distribution.

(Refer Slide Time: 18:42)

So, there are two distributions. So, what you do is you set up your cutoffs. These cutoffs

are called confidence intervals.



So, you say that if my value is anywhere in this range, then I assume that my value is

coming from this distribution. Distribution 1, let this be distribution 2. However, if the

value lies somewhere here even here I say it is coming from this particular distribution;

so this particular dividing line that you have that shows that there is a scope of error.

What may have happened is that actually the value came from this particular distribution

which is distribution 1, but because it was in this extreme position, you ignored it. The

other  kind  of  error  that  may  happen  is  that  you  got  a  value  somewhere  here.  You

assumed  it  to  be  coming  from distribution  1,  but  actually  it  was  coming  from this

distribution 2 and hence, you accepted it.

So,  this  error  that  happens  where  you  reject  something  despite  it  coming  from the

original distribution, this is called type 1 error or called alpha and the error where despite

this coming from this part, despite it coming from this part, you still reject it. That is

called type 2 error. So, both the errors are there. So, we will talk about the errors later.

For  your  intuition,  we must  focus  primarily  on  the  type  1 error  for  now and let  us

understand that type 1 error is primarily the error of rejecting a distribution or rejecting a

sample, rejecting a hypothesis despite it coming from the distribution, because it was

beyond the confidence interval level. So, this is the primary intuition behind the entire

philosophy  of  hypothesis  testing  you  primarily  do  three  steps  to  do  any  kind  of

hypothesis testing in step 1.

(Refer Slide Time: 22:17)



You calculate a test statistics which is nothing, but based upon your kind of hypothesis

that you want to perform, the kind of question you want to answer and based upon the

kind of values that you got, you calculate a metric. This is nothing, but a metric, then you

decide a confidence interval.

So, for example, you may say that I want to be 95 percent sure that the values I have got

from this particular distribution. So, you decide a confidence interval. So, in case it is 95

percent, then what you do is you now here when you are calculating a test statistic or a

metric, you assume a particular form of mimicking the reality what you says that because

my sample size is lower because this is a particular kind of a question that I am trying to

answer,  you  assume  that  a  different  kind  of  a  distribution,  not  exactly  a  normal

distribution is what is relevant here.

So, this is suppose to mimic the reality. Now, this is supposed to be a distribution. This

reality is supposed to be a distribution d. So, what you do is you compare the value of d

at 95 percent with this  metric  m and if  you believe that whatever  be the 95 percent

confidence  interval,  this  metric  m still  lying  within  that  interval.  You  say  that  well

whatever values I have got that belongs to this particular distribution. If they do not, then

you reject it.

So, this is the broad intuition behind it.

(Refer Slide Time: 25:37)



So, if we go back to our example of you getting score from 10 employees where if you

recall, we found that the mean was 44.5, the standard deviation was 11.41 and minimum

acceptable score was 45. So, what you do is, you create a question. So, hypothesis is

basically it all start with your hunch. For example, your hunch was that well after all the

efforts that I have taken, the score is still above 45.

So, your hunch is that mu which is the average score, mu is population mean. So, the

mean of the population or the average score of this mean, so your hunch is that your mu

is greater than 45 given that these were the ten observations, given that this was the

sample that you received, sample you know n was 10. So, you made ten observations,

44.5 was the mean, 11.4 was the standard deviation given that you get this information,

you make a hunch or you make a hypothesis that the mean of the population is greater

than 45. So, this is just a hypothesis. Whatever hypothesis you make, you call it the null

hypothesis.

Now, what is the alternate hypotheses, but may be wrong. The alternate hypothesis is that

h 1 denoted  by h 1 is  that  the mean is  less than 45.  So, this  is  called the  alternate

hypothesis. Now, your goal is to decide whether you should choose this one or this one.

How  do  you  choose  number  1?  You  assume  that  all  this  population  is  a  normal

distribution; you assume that you do not know it is a normal distribution, but you do not

know what that mu is or what are the distribution looks like.

So, you have two choices. This represents one distribution, distribution 1. This represents

another distribution, distribution 2. You have to choose this, one of these distributions.

The  complexity  comes  because  these  two  distributions  are  not  completely  separate.

There is a common area as let me just briefly make the diagram again. So, this is one

distribution, this is another distribution, this is the distribution of the null hypothesis, this

is the distribution of the alternate hypothesis. The issue is that there is a common area out

here.  So,  how do you  decide  if  a  point  comes  here  that  whether  it  belongs  to  this

distribution or this distribution?

Hence, you take recourse of the confidence interval. You say I make a cut off here. Let

this  cutoff be at  95 percent.  It  can be 95 percent,  it  can be 99 percent or it  may be

whatever. 95 percent here means simply that of my entire population, 95 percent of the

values are in this region. So, 95 percent simply means that of my entire population, 95



percent of the population is going to be in the left side of it. So, now you want to choose

whether you go with this or you go with this. There can be a different kind of hypothesis

testing assignments where instead of an inequality, you are testing for equality.

(Refer Slide Time: 30:52)

You do not know whether the score is good or bad. You just want to see whether for

example,  you  could  did  some  experiment  on  a  set  of  people  or  set  of  patients  in

pharmaceutical contexts or some other kind of experiments and when you got some new

observations.

Now, you want to see whether has something changed from the population. So, here you

are not  concerned with whether  it  is  greater  or less than,  you want  to  be concerned

whether it is different or not. So, in this case if this be my hypothesis, I define cut offs on

both sides and say that if the value I get is within this range, then I accept it. So, in both

cases a normal distribution, in other case let me just draw for comparison, you just make

one side and you say that if this is if it is anywhere here till minus infinity, you accept it.

So, these are two different kinds of problems almost the same variety in ones case you

are making two side limits or it is called two tailed and here we are having just one

single tailed,  one tail.  So, typically  what happens is because a normal distribution is

symmetric, if this area is 5 percent for example you are doing a confidence interval of 95

percent for the difference that comes is if it is a single tailed, you take 5 percent on this

side and it can be on the left side also.



In this case because it is evenly distributed, you divide it between 2.5 percent and 2.5

percent. So, this is the problem assignment. Now, what can change? In this a lot of things

can change.

(Refer Slide Time: 34:00)

So, this being a frame work what can change number one, your type of problem can

change.  For  example,  here  I  give  you example  of  comparing  a  sample  mean verses

population mean. Now, whenever you read the literature, I mean just keep a note of this

that whenever there is a mu, this refers to populations and this x bar refers to sample. So,

this is the general notation. So, one is you compare these verses. This you can compare

your  standard  deviation  with  the  populations  standard  deviations.  Here  you  have

compared verses population, you can compare one sample mean with the another sample

mean, you can compare the same sample when same sample one say at time T 1 versus

time T 2.

Now,  these  are  just  one  verses,  one  comparison,  then  you  can  make  multiple

comparisons. As we move into multiple comparison, we move into a field called design

of experiments. The basic one start with something called anova, where what you are

doing is you are comparing multiple samples like this and not just two, but multiple

samples at one go.

So, the type of problem can change and when type of problem changes, this also means

that the metric or the test statistic.
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This is the word which is used in the domain, the test statistics changes. So, in one case

we assume because when it was simple suppose you take a large sample from a normal

distribution and you just want to compare the means that you assume to be a normal

distribution. So, this test statistics actually comes from z distribution which is nothing,

but a normal distribution with mean of 0 and standard deviation of 1. If you are taking a

smaller sample, you have T distribution which is a different distribution and hence, the

formula of this metric changes.

When you make comparison of variance, the square term involved and hence, you no

more  use  these  distributions.  You  make  distributions  which  are  more  complex

combinations of linear of normal distribution. So, in most of the cases, you will see that

these test statistics are derived from normal distribution, but because they are derived

from normal distribution, they may not be an exactly normal distribution. So, this test

statistics changes and what you finally do is that and the other thing that change is the

confidence interval. You can decide that you want to take 95 percent confidence interval

which means that if 95 percent of the values are within that range, you accept it. You can

extend it to 99 percent, you can extend it to 99.99 percent.

So,  typically  what  you do is  that  the null  hypothesis  is  normally as is  situation and

alternate  hypothesis  is  the  new  situation.  So,  for  example,  if  you  are  testing  on  a

particular impact of a drug, so here null hypothesis that no change happens and H 1



alternate hypothesis is that there is a change. So, depending upon how much conservative

you  want  to  be  between  accepting  this  one,  this  one,  you  change  your  confidence

interval. So, when you talk about things like six sigma, so six sigma is nothing, but a

confidence interval whose length is six times the standard deviation; so 6 into standard

deviation which is some 99.99 whatever.

So, it is a very extreme. So, when you are into quality control, you typically tend to keep

this very high confidence interval. Then, you are into more exploratory or more softer

sciences, the typical norm. For example,  in most of the management field the typical

norm is  95 percent.  Sometimes  you may also go to  90  percent  depending  upon the

quality of data that you get and how conservative you want to be about any kind of a

measurement (refer time: 40:00).

So, this is the broad hypothesis testing frame work. Now, let us just take an example. So,

all that we have just discussed it actually starts making some sense. You get a feel of

what we are trying to do. So, for example, we have a case where you took some samples.

(Refer Slide Time: 40:30)

You took 16 samples. The mean was 32, the standard deviation was 4 and as we said

there were 16 samples which means that you took 16, you did something and then, you

took 16 values out of the populations and then, you want to test the hypothesis that this

mean of the new population or whatever the distribution that do not know is say 35. So,

this is what you want to test whether a value of 35 is possible or not.



So, what you do is, suppose you want to be taking a confidence interval of 90 percent

which means the alpha which is type 1 error is 10 percent. Type 1 error which means that

you are open to the fact that you may be making a mistake in 10 percent of the cases. So,

what you want to actually assess is that a value of 35 if I draw the distribution curve

again, you want to be sure that a value of 35 lies somewhere here. So, this is what you

are trying to do. So, now there are two approaches of doing it. In one you actually create

given that 32 is the mean, you create a confidence interval around sample mean x bar.

So, in this case the confidence interval around this is given by x bar minus c sigma by

root n x plus c sigma by root n. This c is nothing, but the value of at confidence interval.

So, for example if you take confidence interval of 0.9, then this value comes to 1.645. If

it is 0.95, this comes to 1.97 and so on. It keeps increasing. If it is 0.99, it comes to 2.58

because these curve never reaches,  touches the x axis and it goes till  infinity. It gets

thinner and thinner. So, any incremental movement that you make, if you move your

confidence inter from here to here to here to here, you know just for a 5 percent for

example 0.9. This was 0.9 and this was 0.95 and this was 1.99. You will see that the

distance you have to cover is actually, so this graph is not the right way. So, if this be the

99, so probably 99 will  lie  somewhere much farther 1.642, 0.963, 0.58. So, it  keeps

because the curve is getting thinner and thinner. There are less number of observations

that you can make in this region.

So, probability  is  very low here you know. So, this  is  like high probability. So,  this

increases. So, what you do is you create 90 percent confidence interval. In this case, this

comes out to be if you do the calculations, 30.355, 33.645. Now, how do you get these

values of confidence interval? For different normal distributions, you have tables, the

tables of these are called z tables. If you are using r or you are using xl, there is a formula

that you can use which is nothing, but the formula of the normal distribution and hence,

you can get these values.

So, as an analytics practitioner, how you get these values c will be list of concern, but to

understand this c and see whether this c actually applies here or not is what you should

be focused upon. So, here you for example you see that with 90 percent confidence, you

can say that if I observe a value of 32, the confidence interval is 30 to 33.645. Here what

we have done is you assume that your population mean is equal to your sample mean and

you want to see what is the variation.



You assume that your sample standard deviation is also equal to a population standard

deviation because in most cases because you do not know the population,  you never

know  the  populations  standard  deviation.  So,  standard  deviation  of  your  sample  is

considered a good proxy for or the only option, the only proxy even if it is not that good

and if you go to the literature, you will see why it actually creates a lot of problem, but in

absence of any other information that is the best the only proxy we have. So, we have no

choice. So, then this be the range of values that will be there if this was the distribution.

So, here if you say mu is equal to 35 or you want to see whether a value of 35 is part of

this range, you say no because 35 is out of this range. Hence, you reject that 35 is the

value acceptable in this range. So, if your alternate hypothesis was or null hypothesis

whatever was that 35 is part of this particular distribution.  You reject it.  You say the

value of x cannot be 35 assuming that 90 percent confidence interval is there. So, one

way of doing is to create this confidence interval. So, this is the ci approach of doing

hypothesis testing which is very popular among people who come from engineering or a

laboratory  science  field  because  they  have  always  made  this  confidence  interval  on

anything that they create.

So, people like systems engineers and people like production engineers who are about

quality control, they tend to approach this problem from a confidence interval approach.

If  you  look  at  the  management  disciplines,  the  social  sciences,  the  pharmaceutical

industries, so in these disciplines the alternate approach actually emerged. So, both are

actually coming from the same family or same kind of approach. The formulation is

exactly same, but you know this is the different way of doing and this is what is more

popular. So, this is the table based or the test statistic approach.
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So, here what you do is as we said in this case you calculate your z equal to x bar minus

mu by sigma by root n. So, mu in this case was 35 which we wanted to test. A x bar was

32 which we got from the sample, this was 4 n was 16.

So, you do this calculation. For example, if you wanted to test at 95 percent confidence

interval  which is  very common in this domain,  then the z for 95 percent confidence

interval is equal to 1.96. So, now, let me call it z ci. So, now if your z that you get here

this is greater than 1.96, then you say that there is a difference which means 35 is an

acceptable value. If it is less, then accept hypothesis else reject.

Now, note that this accept and reject also come with a kind of rider. Basically if it is

greater than this, you accept the hypothesis h 1 which says that the value is 35 or z is

greater than 35, x is greater than 35 or whatever, but that does not mean that you accept

this. It means just that you have sufficient widens to reject the null hypothesis. If you get

a lower value, it just means that you do not have sufficient evidence to reject the null

hypothesis. That is it. It does not say that it is true or false because there is that 5 percent

error limit that we have.

So, we should always be very clear on this that you are accepting the alternate hypothesis

does  not  mean that  the null  hypothesis  is  wrong.  In all  situations,  there  is  always a

margin of error in which we are playing.



So, in the next lecture, we will take some examples and see how this hypothesis test

works  for  different  scenarios.  We will  talk  about  hypothesis  testing  for  independent

samples,  for  dependent  samples.  We will  also  talk  about  some  non-parametric  tests

where  you do not  assume any  distributions  and still  go  about  doing your  statistical

inference.

Thank you very much.


